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Calendrical Calculations 
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SUMMARY 
A unified, algorithmic presentation is given for the Gregorian (current civil), ISO, Julian 
(old civil), Islamic (Moslem), and Hebrew (Jewish) calendars. Easy conversion among 
these calendars is a byproduct of the approach, as is the determination of secular and 
religious holidays. 
KEY WO-S Calendar Holidays Gregorisn calendar Hebrew calendar Islamic calendar IS0 calendar 
Julian calendar 

Teach us to number our days, that we may attain a wise heart. 
--PS&S 90~12 

INTRODUCTION 

Calendrical calculations are ubiquitous. Banks need to calculate interest on a daily 
basis. Operating systems need to switch to and from daylight savings time. Dates 
of secular and religious holidays need to be computed for consideration in planning 
events. Paychecks need to  be issued on weekly, biweekly, or monthly schedules. Bills 
and statements must be generated periodically. Most of these calculations are not 
difEcult because the rules of our civil calendar (the Gregorian calendar) are straight- 
forward. 

Complications begin when we need to know the day of the week on which a given 
date falls or when various religious holidays based on other calendars occur. These 
complications lead to difficult programming tasks-not difficult in an algorithmic 
sense, but difficult because it can be extremely tedious to delve, for example, into the 
complexities of the Hebrew calendar and its relation to the civil calendar. 

The purpose of this paper is to present, in a completely algorithmic form, a de- 
scription of five basic calendars and how they relate to one another: the present 
civil calendar (Gregorian), the recent IS0  commercial calendar, the old civil calendar 
(Julian), the Islamic (Moslem) calendar, and the Hebrew (Jewish) calendar. Infor- 
mation that is sufficiently detailed to allow computer implementation is difficult to 
find for the Islamic and Hebrew calendars since the published material is often inac- 
cessible, ecclesiastically oriented, incomplete, inaccurate, based on extensive tables, 
overburdened with extraneous material, focused on shortcuts for hand calculation to 
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avoid complicated arithmetic or to check results, or diAicult to fmd in English. Most 
existing computer programs are proprietary, incomplete, or inaccurate. 

The need for such a secular presentation in the public domain was made clear to us 
when the second author, in implementing a calendar/diary feature for GNU Emacs,' 
found difficulty in gathering and interpreting appropriate source materials that de- 
scribe the interrelationships among the various calendars and the determination of 
the dates of holidays. The material presented in this paper, in the form of COM- 
MON  LISP^ functions, unifies the calculations for all five calendars.* We have chosen 
Lisp as the vehicle for implementation because it encourages functional programming 
and has a trivial syntax, nearly self-evident semantics, historical durability, and wide 
dis tribution. 

It is not the intention of this paper to give a detailed historical treatment of the 
material, nor, for that matter, a mathematical one; our goal is to give a computa- 
tional treatment that will prove useful to programmers. Thus, although we give some 
necessary historical, religious, mathematical, and astronomical details in the text, 
the focus of the presentation is in the Lisp functions. Full historical/religious details 
and mathematical/astronomical underpinnings of the calendars can be pursued in 
the references. We have chosen not to optimize the code at the expense of algorith- 
mic clarity; consequently, considerable improvements in economy are possible (some 
possibilities are pointed out). 

In the next section we describe the underlying d y i n g  idea of all the calculations. 
The details of specific calendars are presented in subsequent sections. Historically, 
the oldest of the calendars that we consider is the Julian (the roots of which date 
back to the ancient Roman empire). Next oldest is the Hebrew calendar (fourth cen- 
tury), followed by the Islamic calendar (seventh century), followed by the Gregorian 
modification to the Julian calendar (sixteenth century). Finally, the International 
Organization for Standardization's IS0  calendar is of twentieth century origin. For 
expository purposes, however, we present the Gregorian calendar first because it is 
the most popular calendar currently in use; then we give the IS0  calendar which de- 
pends wholly on the Gregorian. Since the Julian calendar is so close in substance to 
the Gregorian, we present it next. Then we give the Islamic calendar which, because 
of its simplicity, is easy to implement. Finally, we present the Hebrew calendar, the 
most complicated of the five calendars, and the most difficult to implement. In the 
penultimate section, we give algorithms for calculating the dates of all major and 
many minor secular and religious holidays. The find section contains descriptions of 
two other calendars for which we do not provide algorithmic details. 

ABSOLUTE DAY NUMBERS 

Over the centuries, human beings have devised an enormous variety of methods for 
specifying (An exceptional survey can be found in the Encyclopedia of 
Religion and Ethics,' vol. III, pp. 61-141 and vol. V, pp. 835-894.) None are ideal 

'To insure correctness, all code in this paper was typeset directly fiom working Lisp functions. We 
wi l l  gladly provide these Lisp functions in electronic form: send an empty electronic mail message to 
raingoldQcs .ninc .edn with the subject line containing precisely the phrase 'send-cal'; your message 
wi l l  be answered automatically. 
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computationally, however, because all have idiosyncrasies resulting from attempts to 
coordinate a convenient human labeling with lunar and/or solar phenomena. All of 
the calendars that we consider have an integral number of days in a month and an 
integral number of months in a year, but the astronomical events with which they 
are supposed to correlate do not follow such a convenient pattern, nor are the precise 
lengths of astronomical cycles constant over time. Rather, the mean length of a 
(synodic) month is currently 29.5306 (mean) days and the current mean length of a 
(tropical) year is 365.2422 days. The Merent calendars differ in the accuracy with 
which their months and years approximate these figures. 

For a computer implementation, the easiest way to reckon time is simply to count 
days: Establish an arbitrary starting point as day 1 and specify a date by giving 
a day number relative to that starting point;' a single thirty-two bit integer allows 
the representation of more than 11.7 million years. Such a reckoning of time is, 
evidently, extremely awkward for human beings and is not in common use, except 
among astronomers who use Julian day numbers to specify dates.@ 

We have chosen Monday, January 1,l c.E.* (Gregorian) as our absolute date 1 and 
count forward day-by-day from there. Of course, this is anachronistic because there 
was no year 1 C.E.  on the Gregorian calendar-the Gregorian calendar was devised 
only in the sixteenth century-so by January 1, 1 C.E. (Gregorian) we mean the day 
we get if we extrapolate backwards from the present; this day turns out to be Monday, 
January 3, 1 C.E. (Julian). 

We should thus think of the passage of time as a sequence of days numbered 1, 
2, 3, . . . that the various human-oriented calendars label differently. For example, 
absolute day 710347 is called November 12, 1945 C.E. on the Gregorian calendar, 
day 1 of week 46 of 1945 c.E. on the I S 0  calendar, October 30, 1945 C.E. on the 
Julian calendar, Dhu al-Hijjah 6, 1364 A . H . ~  on the Islamic calendar, and Kislev 7, 
5706 A.M.$ on the Hebrew calendar. All that is required for calendrical conversion 
is to be able to convert to and from this absolute calendar. We give, in subsequent 
sections, Lisp functions to do the conversions for the Gregorian, ISO, Julian, Islamic, 
and Hebrew calendars. The algorithms given in this paper do not generally work for 
non-positive absolute dates. 

The date Monday, January 1, 1 C.E. (Gregorian), though arbitrarily chosen as our 
starting point, has two desirable characteristics. First, it is early enough that almost 
all dates of interest are represented by positive integers; in any case, using any earlier 
date would be problematic because of historical irregularities in the application of 
the Julian leap year rule. Second, since the day is a Monday, determining the day of 
the week amounts to taking the absolute date modulo seven-zero is Sunday, one is 
Monday, and so forth. 

LISP PRELIMINARIES 
For readers unfamiliar with Lisp, this section provides the bare necessities. Other 
details will be mentioned in passing as they are used; a complete description can be 
found in COMMON LISP: The Language.2 

*Common era; or, A.D. 
'Anno hegiroc; in the year of the Hegira (Mohammed's fight to Medina). 
*Anno rnundi; in the (traditional) year of the world (since creation). 
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All functions in Lisp are written in prefix notation: If f is a defined function, then 
(f eO e i  e2 ... en) 

applies f to  the n f 1 arguments eo, e l ,  82, . . . , en. Thus 

(t I -2 3) 

adds the three numbers and returns the value 2; 

(<= 1 2 3) 

checks that the three numbers are in nondecreasing order and yields true (t in Lisp). 
Lists are Lisp’s main data structure. To construct a list (e0 e l  82 . . . en) the 

expression 

( l i s t  eO e l  e2 ... en) 

is used. The function (nth i 1) extracts the i th element of the list 1, indexing from 
zero; the predicate (member x 1) tests i f x  is an  element of 1. To get the first (indexed 
zero), second, or third elements of a list, we use the functions first, second, and 
third, respectively. The empty list is represented by n i l .  

Functions are defined using the defun command, which has the following syntax: 

(defun function-name (paraml ... paramn) 
expression) 

For example, we can define a function (unavailable in COMMON LISP) to return the 
(truncated) integer quotient of two integers: 

(defun quotient (m n) 
(floor (/ m n ) ) )  

We will represent all dates on the Gregorian, Julian, Islamic, and Hebrew calendars 
by a list of the form (month day year) in which month, day, and year are each 
integers. (COMMON LISP places no a priori upper bound on the size of integers; none 
of our calculations require more than 32-bit integers for dates in the next twenty 
thousand years; 24 bits suffice for all of the calculations, except as noted.) To extract 
the individual components of such a date we use the following access functions: 

(defun extract-month (date) 
;; Month f i e l d  of date = (month day year). 

( f i r s t  date)) 

(defun extract-day (date) 
; ; Day f i e l d  of date = (month day year). 

(second date)) 

(defun extract-year (date) 
;; Year f i e l d  of date = (month day year). 
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(third date)) 

Notice that the double semicolons demarcate comments. 

to compute sums. The expression 
For convenience in expressing our calendar functions in Lisp, we introduce a macro 

(sum f i k p) 

computes '&k,p(i) f ( i ) ;  that is, the expression f ( i )  is summed for all i = H, H + 1, 
. . . , continuing only as long as the conditionp(i) holds. The (opaque) COMMON LISP 
definition of sum is as follows: 

(defmacro sum (expression index initial condition) 
;; sum expession f o r  index = initial and successive integers, 
; ; as long as condition holds. 

(let* ((temp (gensym))) 
'(do ((,temp 0 (+ ,temp ,expression)) 

((not ,condition) ,temp)))) 
(,index ,initial (I+ ,index))) 

THE GREGORIAN CALENDAR 
The calendar in use today in most countries is the new style, or Gregorian, cal- 
endar designed by a commission assembled by Pope Gregory XIII in the sixteenth 
~en tu ry .~ ,  6* 6, This strictly solar calendar is based on a 365-day common year 
divided into twelve months of lengths 31, 28, 31, 30, 31,30, 31, 31, 30, 31, 30, and 31 
days, and on 366 days in leap years, the extra day being added to make the second 
month 29 days long: 

31 days 
31 days (2) February 28 (29) days (8) August 

(3) March 31 days (9) September 30 days 
(4) April 30 days (10) October 31 days 
(5) May 31 days (11) November 30 days 
(6) June 30 days (12) December 31 days 

The leap-year structure is given in curly brackets-a year is a leap year if it is divisible 
by 4 and is not a century year (multiple of 100) or if it is divisible by 400. For example, 
1900 was not a leap year, while 2000 will be. The Gregorian calendar differs from its 
predecessor, the old style or Julian calendar, only in that the Julian calendar did not 
include the century rule for leap years-all century years were leap years. 

The Julian calendar was instituted in 45 B.c.E.* by Julius Caesar on January 1, 709 
A.u .c .~;  it was a modification of an  ancient Egyptian calendar. Since every fourth 

(1) January 31 days (7) J d Y  

*Before the common era; or, B.C. 
' A b  urbe condita; from the (traditional) founding of the city (of Rome). 
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year was a leap year, a cycle of 4 years contained 4 x 365 + 1 = 1461 days, giving 
an average length of year of 365.25 days. This is somewhat more than the mean 
length of the solar year, and over the centuries the calendar slipped with respect to 
the solar year. By the sixteenth century, the date of the vernal (spring) equinox had 
shifted from around March 21 to around March 11. If this error were not corrected, 
eventually Easter, the date of which depends on the vernal equinox, would migrate 
through the whole calendar year. Pope Gregory instituted only a minor change in the 
calendar-century years not divisible by 400 would no longer be leap years. Thus, 
three out of four century years are common years, giving a cycle of 400 years containing 
400 x 365 + 97 = 146097 days and an average year length of 146097/400 = 365.2425 
days. He also corrected the accumulated 10-day error in the calendar by proclaiming 
that Thursday, October 4, 1582 c.E., the last date in the old style (Julian calendar), 
would be followed by Friday, October 15, 1582 c.E., the first day of the new style 
(Gregorian) calendar. Catholic countries followed his rule, but Protestant countries 
resisted: Spain, Portugal, and Italy adopted it immediately, as did the Catholic states 
in Germany. The Protestant parts of Germany waited until 1700 to adopt it, Great 
Britain and its colonies (including the United States) waited until 1752, Russia held 
out until after the revolutionin 1918, and Bulgariauntill920 (an extensive list of dates 
of adoption of the Gregorian calendar can be found in the Ezplanatory Supplement to 
the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac’). 

To convert from a Gregorian date to an absolute date, we first need a function that 
gives the last day (that is, the number of days) for any Gregorian month. This is 
easily written: 

(defun last-day-of-gregorian-month (month year) 
; ; Last day in Gregorian month during year.  
(if ; ; February in a leap year 

(and (= month 2) 
(= (mod year 4) 0) 
(not (member (mod year 400) (list 100 200 300)))) 

;; Then return 
29 

;; Else return 
(nth (1- month) 

(list 31 28 31 30 31 30 31 31 30 31 30 31)))) 

The function i f  has three arguments, a Boolean condition, a then-expression, and an 
else-expression. The function 1- decrements an integer by one (the similar function 
l+ increments by one). Here, and elsewhere, arrays would be more efficient than lists. 

The calculation of the absolute date from the Gregorian date (which has been 
described’ as ‘impractical’) can now be done by counting the number of days in 
prior years-both common and leap years, the number of days in prior months of the 
current year, and the number of days in the current month: 

(defun absolute-from-gregorian (date) 
;; Absolute date equivalent to the Gregorian date. 
(let* ((month (extract-month date)) 
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(year (extract-year date))) 
;; Return 

(+ (extract-day date) ; ; Days so far this month. 
;; Days in prior months this year. 

; ; Days in prior years. 

(sum 

(* 365 (I- year)) 
(quotient (1- year) 4); ;  Julian leap days in prior years... 
(- ;; ... minus prior century years... 

(last-day-of-gregorian-month rn year) m I (< m month)) 

(quotient (I- year) 100)) 

(I- year) 400)))) ;; ... by 400. 
(quotient .. ,, ...p lus prior years divisible... 

The COMMON LISP construct let* defines a sequence of constants (possibly in terms 
of previously defined constants) and ends with an expression the value of which is 
returned by the construct. 

Calculating the Gregorian date from the absolute date d involves sequentially deter- 
mining the year, month, and day of the month. The year is first closely approximated 
from below by Ld/366] and then found precisely by stepping through subsequent years 
(that is, by a linear search). The month is then found by a similar linear process, and 
the day of the month is determined by subtraction: 

(defun gregorian-from-absolute (date) 
;; Gregorian (month day year) corresponding absolute date. 
(let* ((approx (quotient date 366));; Approximation from below. 

; ; Search forward from the approximation. (year 
(+ approx 

(sum I y approx 
(>= date 

(absolute-from-gregorian 
(list i i (I+ y) ) ) ) ) ) )  

(month ;; Search forward from January. 
(it (sum I m I 

(> date 
(absolute-from-gregorian 
(list m 

(last-day-of-gregorian-month m year) 
year)) 1) 1) 

(day ;; Calculate the day by subtraction. 
(- date (I- (absolute-from-gregorian 

(list month I year)))))) 
;; Return 

(list month day year) ) > 

It is not hard to determine better approximations for the year, and the same is true 
for the approximations we will use for other calendars. In fact, the year can be 
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determined ezactly without searching, but at considerable expense in the clarity of 
the code.* 

THE I S 0  CALENDAR 
The International Organization for Standardization (ISO) calendar, popular in Swe- 
den and other European countries, specifies a date by giving the ordinal day in the 
week and the 'calendar week' in a Gregorian year. Section 3.17 of the IS0 standardls 
defines a calendar week as 

A seven day period within a calendar year, starting on a Monday and 
identified by its ordinal number within the year; the first calendar week 
of the year is the one that includes the first Thursday of that year. In 
the Gregorian calendar, this is equivalent to the week which includes 4 
January. 

Determining the beginning of the first calendar week of a Gregorian year thus 
requires determining the Monday on or before January 4 of that year. Since we will 
need similar determinations for some of the holidays, discussed in a later section, we 
encapsulate the formula d - ( ( d  - k) mod 7) to find the kth day of the week (k = 0 
for Sunday, and so on) that falls in the seven-day period ending on absolute date d: 

(defun Kday-on-or-before (date k) 
; ; Absolute date of the kday on or before date. 
;; k = 0 means Sunday, k = 1 means Honday, and so on. 

(- date (mod (- date k) 7))) 

Applying Kday-on-or-before to d + 6 gives us the Kday-on-or-after an absolute 
day d. Similarly, applying it to d + 3 gives the Kday-nearest to absolute date d, 
applying it to d - 1 gives the Kday-previous to absolute date d, and applying it to 
d + 7 gives the Kday-f ollouing absolute date d. 

The I S 0  calendar counts Sunday as the seventh day of the week (throughout this 
paper we have otherwise counted it as the zeroth day of the week), so we implement 
this calendar as follows: 

*The exact determination of the Gregorian year from the absolute date is an exercise in base 
conversion in a mixed-radix system" : 

n400 = [(date - 1)/146097J 
d~ 
n l O O  = (d,  - 1)/36524J 2 1 1 - 1) mod 36524 

ds = dz - 1) mod 1461 
nl - (ds - 1)/3651 
d4 

= (dote - 1) mod 146097 

(d, - 1)/14611 

Ids - 1) mod 365 

{number of completed 400 year cycles} 
{days not included in n4oo) 
{number of 100 year cycles not included in n r o o }  
{days not included in n400  or n l o o }  
{number of 4 year cycles not included in n400 or n l o o }  
{days not included in n400 ,  n l o o ,  or n4} 
{number of years not included in n 4 0 0 ,  n l o o ,  or n4) 
{days not included in n 4 0 0 ,  n l o o ,  n 4 ,  or nl} 

date is ordinal day d4 in Gregorian year 400 x n 4 0 0  + 100 x n100 + 4 x n4 + nl + 1 
Similar calculations can be used for the Julian, Islamic, or Hebrew calendars. 
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(defun absolute-from-iso (date) 
;; Absolute date equivalent to IS0 date = (week day year). 
(let* ((week (first date)) 

(day (second date)) 
(year (third date))) .. 

y y  Return 
(t (Kday-on-or-before 

(absolute-from-gregorian (list 1 4 year)) 
1) ;; Days in prior years. 

(* 7 (I- week)) 
(I- day)))) ;; Prior days this week. 

; ; Days in prior weeks this year. 

(defun iso-from-absolute (date) 
; ; IS0 (week day year) corresponding to the absolute date.  
(let* ((approx 

(extract-year (gregorian-from-absolute (- date 3)))) 
(year (if (>= date 

(absolute-from-is0 (list i 1 (I+ approx)))) 
;; Then 

;; Else 
(i+ approx) 

approx) 1 
(week (it (quotient 

(- date (absolute-from-iso (list 1 I year))) 
7) ) )  

(day (if (= 0 (mod date 7 ) )  
;; Then 

7 
;; Else 

(mod date 7)))) .. ,, Return 
(list week day year))) 

THE JULIAN CALENDAR 

The calculations for the Julian calendar, which we described in our discussion of the 
Gregorian calendar, are nearly identical to those for the Gregorian calendar, but we 
must change the leap-year rule used in determining the last day of a month: 

(defun last-day-of-julian-month (month year) 
;; Last day in Julian month during yeaT. 
(if ;; February in a leap year 

(and (= month 2) (= (mod year 4) 0 ) )  
;; Then return 

29 



908 N. DERSHOWITZ AND E. M. REINGOLD 

;; Else return 
(nth (1- month) (list 31 28 31 30 31 30 31 31 30 31 30 31)))) 

Converting from a Julian date to an absolute date requires a calculation similar 
to that in the Gregorian case, but with two minor adjustments: We no longer need 
consider century-year leap days, but we subtract 2 because absolute date 1 is January 
3, 1 C.E. (Julian), and so the first two days of 1 C.E. (Julian) must be excluded. 

(defun absolute-from-julian (date) 
;; Absolute date equivalent to Julian date. 
(let* ((month (extract-month date)) 

(year (extract-year date))) 
;; Return 

(+ (extract-day date) ; ; Days so far this month. 
;; Days in prior months this year. 

;; Days in prior years. 

;; Days elapsed before absolute date 1. 

( 

(* 365 (I- year)) 
(quotient (1- year) 4) ; ;  Leap days in prior years. 
-2) 1) 

(last-day-of-julian-month m year) m 1 (< m month)) 

Except for obvious changes in reference from Gregorian to Julian, conversion of 
absolute dates to Julian dates is identical to conversion of absolute dates to Gregorian 
dates. 

(def un julian-f rom-absolut e (date) 
;; Julian (month day year) corresponding to absolute date. 
(let* 

( (approx ;; Approximation from below. 
(quotient (+ date 2) 366)) 

; ; Search forward from the approximation. 
(+ approx 
(year 

(sum 1 y approx 
(>= date 

(absolute-from-julian (list 1 1 (it y))))))) 
;; Search forward from January. (month 

(i+ (sum 1 m I 
(> date 

(absolute-from-julian 
(list m 

(last-day-of-julian-month m year) 
year)) ) I ) )  

(day ;; Calculate the day by subtraction. 
(- date (1- (absolute-from-julian (list month 1 year)))))) 

;; Return 
(list month day year))) 



CALENDFUCAL CALCULATIONS 909 

THE ISLAMIC CALENDAR 

The Islamic ~ a l e n d a r ~ - ~ *  l6, l7 is a straightforward, strictly lunar calendar. Its inde- 
pendence of the solar cycle means that its months do not occur in fixed seasons, but 
migrate through the solar year. Days begin at sunset. 

The calendar is computed, by the majority of the Moslem world, starting a t  sunset 
of Thursday, July 15, 622 C.E. (Julian), the year of Mohammed's flight to  Medina. 
In essence, Moslems count absolute date 227015 = Friday, July 16, 622 C.E. (Julian) 
as the beginning of the Islamic year 1, that is, as Muharram 1, 1 A.H. There are 12 
Islamic months which contain, alternately, 29 or 30 days: 

(1) Muharram 30 days (7) Rajab 30 days 
(2) safar 29 days ( 8 )  Sha'ban 29 days 
(3) Rabi I 30 days (9) Ramadan 30 days 
(4) Rabi I1 29 days (10) Shawwal 29 days 
(5) Jumada I 30 days (11) Dhu al-Qada 30 days 
(6) Jumada I1 29 days (12) Dhu al-Hijjah 29 (30) days 

The leap-year structure is given in curly brackets-the last month, Dhu 4-Hijjah, 
contains 30 days in the 2nd, 5th, 7th, loth, 13th, 16th, 18th, 21st, 24th, 26th, and 
29th years of a 30-year cycle.* This gives an average month of 29.5305555.. - days. 
The cycle of common and leap years can be expressed concisely (but obfuscatingly!) 
by observing that an Islamic year y is a leap year if and only if (113 + 14) mod 30 is 
less than 11. 

Determining the last day of an Islamic month is thus done by 

(defun islamic-leap-year (year) 
;; True if year is an Islamic leap year. 

(< (mod (t 14 (* 11 year)) 30) 11)) 

(defun last-day-of -islamic-month (month year) 
;; Last day in month during year on the Islamic calendar. 
(if (or (oddp month) 

(and (= month 12) (islamic-leap-year year))) 
;; Then return 

30 
;; Else return 

29)) 

The function oddp tests for odd integers. (It would be more efficient to compute 
islamic-leap-year by looking up the value in a 30-bit table.) 

Converting from an Islamic date to an absolute date is done by summing the days 
so far in the current month, the days so far in the current Islamic year, the non-leap 
days in prior Islamic years, the leap days in prior Islamic years, and the days prior to 
the Islamic calendar. 

'A minority of Moslems have a slightly Merent leap year structure. 
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(defun absolute-from-islamic (date) 
;; Absolute date equivalent to Islamic date .  
(let* ((month (extract-month date)) 

(year (extract-year date))) 
(+ (extract-day date) ;; Days so far this month. 

(* 29 (I- month)) 
(quotient month 2) .. 9 9  ... this year. 
(* (1- year) 354) 
(quotient ;; Leap days in prior years. 

227014)) ) ;; Days before start of calendar. 

;; Days so far... 

;; Non-leap days in prior years. 

(+ 3 (* I 1  year)) 30) 

Computing the Islamic date equivalent to a given absolute date is done almost iden- 
tically to the computations for the Gregorian and JuLian calendars: We approximate 
the year and search linearly for the exact value; then we find the month by Linear 
search and the day of the month by subtraction. 

(defun islamic-from-absolute (date) 
;; Islamic date (month day year) corresponding to absolute date.  
(if ;; Pre-Islamic date. 

(<= date 227014) 

(list 0 0 0) 
;; Then return 

;; Else 
(let* ((approx ;; Approximation from below. 

(quotient (- date 227014) 3 5 5 ) )  

(+ approx 
(year ;; Search forward from the approximation. 

(sum i y approx 
(>= date 

(absolute-from-islamic 

(month ;; Search forward from Muharram. 
(list i 1 ( I +  y))))))) 

(I+ (sum I m I 
(> date 

(absolute-from-islamic 
(list m 

(last-day-of-islamic-month m year) 
year) 1) 1) 1 

(day ;; Calculate the day by subtraction. 

(list month I year)))))) 
(- date (1- (absolute-from-islamic 

;; Return 
(list month day year)))) 
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It is important to realize that, to some extent, the above calculations are merely 
hypothetical because there are many disparate forms of the Islamic ~alendar .~ Fur- 
thermore, much of the Islamic world relies not on such calculations at all, but on 
proclamation of the new moon by religious authorities. Consequently, the dates given 
by the Lisp functions here can be in error by a day or two from what will actually be 
observed in various parts of the Islamic world; this is unavoidable. 

THE HEBREW CALENDAR 

The Hebrew calendar4-‘) “9 18-25 promulgated by Hillel 11 in the mid-fourth century, 
is by far the most complicated of the five calendars that we consider. Its complexity 
is inherent in the requirement that calendar months must be strictly lunar while 
Passover must always occur in the spring. Since the seasons are dependent on the 
solar year, the Hebrew calendar must harmonize simultaneously with both lunar and 
solar events. As in the Islamic calendar, days begin at sunset. 

The Hebrew year consists of twelve months in a common year and thirteen in a 
leap year: 

(1) Nisan 30 days (7) Tishri 30 days 
(2) I Y Y a r  29 days (8) Heshvan 29 or 30 days 
(3) Sivan 30 days (9) Kislev 29 or 30 days 
(4) Tammuz 29 days (10) Teveth 29 days 

30 days (11) Shevat 30 days 
29 days { (12) Adar I 30 days} ( 6 )  Elul 

29 days 

(5) Av 

(12) ((13)) Adar {11} 

The leap-year structure is given in curly brackets-in a leap year there is an interpo- 
lated twelfth month of 30 days called ‘Adar I’ to distinguish it from the final month, 
‘Adar II’. The length of the eighth and ninth months vary from year to year according 
to criteria that will be explained below. Our ordering of the Hebrew months follows 
biblical custom (Leviticus 23:5) in which (what was later called) Nisan is the first 
month. This numbering causes the Hebrew new year (Rosh HaShanah) to begin on 
the first of Tishri which, by our ordering, is the seventh month-but this too agrees 
with biblical usage (Leviticus 23:24). Adding up the lengths of the months, we see 
that a normal year has 353-355 days, whereas a leap year has 383-385 days. 

The so-called Metonic cycle is based on the observation that 19 mean solar years 
contain almost exactly 235 lunar months. This correspondence, known to ancient 
Babylonian astronomers, makes a solar/lunar calendar feasible. The 235 = 12 x 12 +- 
7 x 13 months in the cycle. are divided into twelve years of twelve months and seven 
years of thirteen months. The Metonic cycle is used in the Hebrew calendar and also 
for the calculation of Easter (as we discuss in the section on holidays). 

In the Hebrew calendar, leap years occur in the 3rd, 6th, 8th, l l th,  14th, 17th, and 
19th years of the 19-year cycle. As in the Islamic leap-year structure, this sequence 
can be computed concisely by noting that Hebrew year y is a leap year if and only if 
(7y + 1) mod 19 is less than 7. Thus we determine whether a year is a Hebrew leap 
Ye= by 
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(defun hebreu-leap-year (year) 
;; True if year is a leap year. 

(< (mod (I+ (* 7 year)) 19) 7)) 

(defun last-month-of -hebrew-year (year) 
;; Last month of Hebrew year. 
(if (hebreu-leap-year year) 

;; Then return 
13 

;; Else return 
12) 1 

The number of days in a Hebrew month is a more complex issue. The twelfth 
month, Adar or Adar I, has 29 days in a common year and 30 days in a leap year, 
but the numbers of days in the eighth month (Heshvan) and ninth month (Kislev) 
depend on the overall length of the year, which in turn depends on factors discussed 
below. Thus we write 

(defun last-day-of -hebrew-month (month year) 
;; Last day of month in Hebrew year.  
(if (or (member month ( l ist  2 4 6 10 13)) 

(and (= month 12) (not (hebreu-leap-year year))) 
(and (= month 8 )  (not (long-heshvan year))) 
(and (= month 9) (short-kislev year))) 

;; Then return 
29 

;; Else return 
30) ) 

where the functions long-heshvan and short-kislev will be given later. 
To present the remainder of the calculations for the Hebrew calendar, it is necessary 

to describe how Hebrew intervals of time are reckoned. The day is divided into 24 
hours and each hour is divided into 1080 parts; a day thus has 25920 parts. For our 
purposes, it is easier to use just days and parts. 

The beginning of the Hebrew new year is determined by the occurrence of the 
new moon (mean conjunction) of the seventh month (Tishri), subject to possible 
postponements of a day or two. The average length of a lunar period is taken to be 
29 days, 12 hours, and 793 parts, that is, approximately 29.530594 days. The new 
moon of Tishri, 1 A.M. (the first day of the f i s t  year for the Hebrew calendar) is fixed 
at Sunday night, 5 hours, 204 parts. Thus we calculate the time elapsed from sunset 
of the preceding Saturday evening, until the new moon of Tishri for the Hebrew year 
y by computing 

(1 day, 5604 parts) + 
(29 days, 13753 parts) x (number of months before year y). 

The start of each new year, Rosh Hashanah (Tishri I), coincides with the calculated 
day of the mean conjunction of Tishri, unless one of four delays is mandated: 
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0 If the mean conjunction is a t  midday or after, then the new year is delayed.* 
Sunset is presumed to occur always at  6 p.m.t Since there are then 18 hours from 
sunset until midday, postponement occurs if the conjunction is a t  18 x 1080 = 
19440 parts or later into the day. 

0 In no event must the new year be on Sunday, Wednesday, or Friday.: This 
introduces an average ‘correction’ of about half a day in the calculated time of 
appearance of the new moon of the month of Tishri.22 

0 To keep the length of a year within the allowable ranges, in rare cases, an 
additional delaying factor may need to be employed. If Rosh HaShanah were 
on Tuesday and the conjunction of the following year were at midday or later, 
then applying the previous two rules would result in delaying the following Rosh 
HaShanah from Saturday (the day of the next conjunction for a common year) 
until Monday. This would require an (unacceptable) year length of 356 days, so 
instead the current Rosh HaShanah is delayed until Thursday. 

0 Rosh HaShanah on Monday after a leap year can pose a similar problem, by 
causing the year just ending to be too short. In this case, Rosh HaShanah is 
delayed until Tuesday. 

These rules are perhaps best described algorithmically: 

(defun hebrew-calendar-elapsed-days (year) 
;; Number of days elapsed from the Sunday prior to the start of the 
; ; Hebrew calendar to the mean conjunction of Tishri of Hebrew yem. 
(let* 

((months-elapsed 
(+ 
(* 235 

(* 12 

(quotient 

;; Months in complete cycles so far. 

;; Regular months in this cycle. 

;; Leap months this cycle 

(quotient (I- year) 19)) 

(mod (1- year) 19))  

(I+ (* 7 (mod (1- year) 19)) )  
19) 1) 

(parts-elapsed (+ 5604 (* 13753 months-elapsed) ) ) 
(day ;; Conjunction day 

(parts (mod parts-elapsed 25920)) 
(+ 1 (* 29 months-elapsed) (quotient parts-elapsed 25920))) 

; ; Conjunction parts 

‘In 923 C.E. the calculated conjunction fell just after midday; this caused a short-lived (921-923 
c.E.) dispute between Palestinian and Babylonian Jewish authorities about whether this rule should 
be applied; some scant details can be found in vol. 4, col. 539-540 of the Encyclopedia Judaico.’6 

‘That is, the moment of sunset is deemed 6 p.m. and sunrise is deemed 6 a.m., so that the ‘daylight 
hours’ and ‘nighttime hours’ have Merent lengths that vary according to the seasons. (This is the 
correct interpretation of chap. 6, par. 2 in Maimonides’ code?’) 

*Excluding Wednesday and Friday prevents Yom Kippur (Tishri 10) from falling on Friday or 
Sunday; excluding Sunday prevents Hoshand Rabba (Tishri 21) from falling on Saturday. 
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(alt ernat ive-day 
(if ( o r  

(>= parts 19440) ;; If new moon is at or  after midday, 
(and 

(= (mod day 7) 2) ; ;  ... or is on a Tuesday ... 
(>= parts 9924) 
(not (hebrew-leap-year year)) ) ; ; of a common year, 

(= (mod day 7) I);; ... or is on a Monday at... 
(>= parts 16789) ;; 15 hours, 589 parts or later... 
(hebrew-leap-year;; at the end of a leap year 

;; at 9 hours, 204 parts or later... 

(and 

(1- year)))) 
;; Then postpone Rosh HaShanah one day 
(I+ day) 

;; Else 
day) 1) 

(if ;; If Rosh HaShanah would occur on Sunday, Wednesday, 
;; or Friday 
(member (mod alternative-day 7) (list 0 3 5)) 

(1+ alternative-day) 
;; Then postpone it one (more) day and return 

;; Else return 
alternative-day))) 

Although the calculations as given above are correct, they involve intermediate 
values that can be far larger than 224 for current dates. To avoid this problem we can 
modify the computation of the day and parts of the conjunction in the let* to read 

(part s-elapsed 
(+ 204 

(* 793 (mod months-elapsed 1080)))) 
(hours -elapsed 

(+ 5 
(* 12 months-elapsed) 
(* 793 (quotient months-elapsed 1080)) 
(quotient parts-elapsed 1080))) 

(day ;; Conjunction day 
(+ 1 

(* 29 months-elapsed) 
(quotient hours-elapsed 24)) )  

(+ (* 1080 (mod hours-elapsed 24)) 
(mod parts-elapsed 1080) ) ) 

(parts ; ; Conjunction parts 

With this modification, only 24 bits are necessary for dates in the foreseeable future. 
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As mentioned above, the length of the year determines the length of the two varying 
months, Heshvan and Kislev. Heshvan is long (30 days) if the year has 355 or 385 
days; Kislev is short (29 days) if the year has 353 or 383 days. The length of the year, 
in turn, is determined by the dates of the Hebrew new years (Tishri 1) preceding and 
following the year in question: 

(defun days-in-hebrew-year (year) 
;; Number of days in Hebrew year.  

(- (hebrew-calendar-elapsed-days (I+ year)) 
(hebrew-calendar-elapsed-days year))) 

(defun long-heshvan (year) 
;; True if Heshvan is long in Hebrew year.  

(= (mod (days-in-hebrew-year year) 10) 5)) 

(defun short-kislev (year) 
;; True if Kislev is short in Hebrew yeaT. 

(= (mod (days-in-hebrew-year year) 10) 3)) 

With all the above machinery, we are now ready to convert to and from Hebrew 
dates, in a manner similar to the previous calendars: 

(defun absolute-from-hebrew (date) 
;; Absolute date of Hebrew date.  
(let* ((month (extract-month date)) 

(day (extract-day date)) 
(year (extract-year date))) 

;; Return 
(+ day ;; Days so far this month. 

(if ;; before Tishri 
(< month 7)  

;; Then add days in prior months this year before and 
;; after Nisan. 

(+ (sum (last-day-of-hebrew-month m year) 

(sum (last-day-of-hebrew-month m year) 
m 7 (<= m (last-month-of-hebrew-year year))) 

m I (< m month))) 
;; Else add days in prior months this year 

(sum (last-day-of-hebrew-month m year) m 7 (< m month))) 
(hebrew-calendar-elapsed-days year);; Days in prior years. 
-1373429))) ; ; Days elapsed before absolute date I. 

(defun hebrew-from-absolute (date) 
;; Hebrew (month day year) corresponding to absolute date. 
(let* ((approx ;; Approximation from below. 

(quotient (+ date 1373429) 366)) 
(year ;; Search forward from the approximation. 
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(+ approx (sum i y approx 
(>= date 

(absolute-from-hebrew 
(list 7 i (it y) ) ) ) ) ) )  

(start 
(if (C date (absolute-from-hebrea (list 1 1 year))) 

;; Then start at Tishri 

;; Else start at Bisan 

;; Starting month for search for month. 

7 

1) 1 
(month ;; Search forward from either Tishri or Nisan. 
(t start 

(sum 1 m start 
(> date 

(absolute-from-hebrew 
(list m 

(last-day-of-hebrew-month m year) 
year)))))) 

(day ;; Calculate the day by subtraction. 
(- date (I- (absolute-from-hebreu (list month I year)))))) 

(list month day year))) 
;; Return 

The function hebreu-calendar-elapsed-days is called repeatedly during the calcu- 
lations, often several times for the same year. More efficient code would avoid such 
repetition. 

HOLIDAYS 
The various calendars are needed to compute the dates of civil and religious holidays. 
In most of this section, we will take the ethnocentric view that our task is to compute 
the absolute dates of holidays that occur in a given Gregorian year; there is clearly 
little difficulty in finding the dates of, say, Islamic holidays in a given Islamic year! 

Secular Holidays 

Secular holidays on the Gregorian calendar are either on fixed days or on a particular 
day of the week relative to the beginning or end of a month. ( A n  extensive list of 
secular holidays can be found in Gregory's Special Days.*') Fixed holidays are trivial 
to deal with; for example, to determine the absolute date of American Independence 
Day in a given Gregorian year we would use 

(defun independence-day (year) 
;; Absolute date of American Independence Day in Gregorian year. 
(absolute-from-gregorian (list 7 4 year))) 

Other holidays are on the nth occurrence of a given day of the week, counting from 
either the beginning or the end of the month. American Labor Day, for example, is the 
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first Monday in September, while American Memorial Day is the last Monday in May. 
We handle such specifications by writing a function that determines the absolute date 
of the nth kth day in a given month in a given Gregorian year, counting backward 
from the end of the month when n < 0. 

(defun Nth-Kday (n k month year) 
;; Absolute date of the nth kday in Gregorian month, year.  
;; If nC0, the nth kday from the end of month is returned 
;; (that is, -1 is the last kday, -2 is the penultimate kday, 
; ; and so on). 
(if (> n 0 )  

;; Then return 

k = 0 means Sunday, k = 1 means Monday, and so on. 

(+ (Kday-on-or-before ;; First kday in month. 
(absolute-from-gregorian 
(list month 7 year)) k) 

(* 7 (1- n))) ; ; Advance n - 1 kdays. 

;; Last kday in month. 
;; Else return 

(+ (Kday-on-or-before 

(list month 

year) 1 

(absolute-from-gregorian 

(last-day-of-gregorian-month month year) 

k) 
(* 7 ( I+  n))))) ; ; Go back -n - 1 &days. 

With this function, we can define holiday dates, such as 

(defun labor-day (year) 
;; Absolute date of American Labor Day in Gregorian year.  
(Nth-Kday I I 9 year));; First Monday in September. 

(defun memorial-day (year) 
;; Absolute date of American Memorial Day in Gregorian year.  
(Nth-Kday -1 I 5 year));; Last Monday in May. 

or determine the starting and ending dates of American daylight savings time: 

(defun daylight-savings-start (year) 
;; Absolute date of the start of American daylight savings time 
; ; in Gregorian year.  
(Nth-Kday I 0 4 year));; First Sunday in April. 

(defun daylight-savings-end (year) 
;; Absolute date of the end of American daylight savings time 
; ; in Gregorian year.  
(Nth-Kday -1 0 10 year));; Last Sunday in October. 
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Christian Holidays 

The main Christian holidays are Christmas, Easter, and various days connected 
with them (Advent, Ash Wednesday, Good Friday, and others; see vol. V, pp. 844- 
853 of the Encyclopedia of Religion and Ethics.') In addition to the complicated 
calculations necessary to determine the date of Easter, there are complications that 
result from the Eastern Orthodox practice of celebrating Christmas according to the 
Julian calendar. 

The date of Christmas on the Gregorian calendar is fixed and presents no problem: 

(defun Christmas (year) 
;; Absolute date of Christmas in Gregorian yeaT. 
(absolute-from-gregorian (list 12 25 year))) 

The related dates of Advent (Sunday closest to November 30; this is equivalent to the 
Sunday on or before December 3) and Epiphany (twelve days after Christmas) are 
computed by 

(defun advent (year) 
;; Absolute date of Advent in Gregorian year. 
(Kday-on-or-before (absolute-f rom-gregorian (list 12 3 year) ) 0) ) 

(defun epiphany (year) 
;; Absolute date of Epiphany in Gregorian year. 

(t 12 (Christmas year))) 

The date of Assumption (August 15), celebrated in Catholic and Eastern Orthodox 
countries, is fixed, and presents no problem. 

The date of Eastern Orthodox Christmas occurring in a given Gregorian year is 
more involved. Since the Julian year is always at  least as long as the corresponding 
Gregorian year, Eastern Orthodox Christmas c a  occur at  most once in a given Gre- 
gorian year, but it can occur either at  the beginning or the end; in some years (like 
1100 c.E.) it does not occur at  all. 

(defun eastern-orthodox-Christmas (year) 
;; List of zero or one absolute dates of Eastern Orthodox 
; ; Christmas in Gregorian y e w .  
(let* ((janl (absolute-from-gregorian (list 1 I year))) 

(dec31 (absolute-from-gregorian (list 12 31 year))) 
(y (extract-year (julian-from-absolute janl))) 
(cl (absolute-from-julian (list 12 25 y))) 
(c2 (absolute-from-julian (list 12 25 (it y))))) 

( append 
(if ;; ci occurs in current year 

.. ,, Then that date; otherwise, none 

(if ;; c2 occurs in current year 

(<= janl cl dec31) 

(list cl) nil) 
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(<= jani c2 dec31) 

(list c2) nil)))) 
.. , , Then that date; otherwise, none 

The function append concatenates its arguments into one list. 
The calculation of the date of Easter has a fascinating history.”* l2 Algorithms 

and computer programs abound6* 6* 28-32 (the discussion of the mathematical aspects 
of the calculation in O’Beirne’s Puzzles and Purudozegl is especially nice), but we 
include Lisp functions here for completeness and because our absolute-date approach 
allows considerable simplification of ‘classical’ algorithms. 

The date of Easter was fixed in 325 C.E. by the Council of Nicaea to be the first Sun- 
day after the first full moon occurring on or after the vernal equinox. This definition 
seems precise, but in reality accurate determination of the full moon and the vernal 
equinox is quite complex and simpler approximations are used in practice; as Kepler 
declared,12 ‘Easter is a feast, not a planet’. The date of Easter is thus based on the 
presumption that the vernal equinox is always March 21 and on approximations to 
the lunar phases called epacts. 

Before the Gregorian reform of the Julian calendar the approximations were fairly 
crude. Assuming the Metonic cycle were accurate would mean that the phase of 
the moon on January 1 would be the same every 19 years. Hence, the epact can 
be approximated by multiplying the number of years since the start of the current 
Metonic cycle (called the ‘golden number’) by the eleven-day difference between a 
common year of 365 days and 12 lunar months of 29.5 days and adjusting by the epact 
of January 1,1 c . E . - ~  this done modulo 30. F’rom the epact one can calculate the 
phase of the moon (in days) on April 5 (ignoring February 29) and go back that many 
days from April 19, giving a date between March 21 and April 19 (inclusive) for the 
(ecclesiastical) ‘Paschal full moon’. Thus the equivalent of the following calculation 
was used to determine Easter from 325 C.E.  until the adoption of the Gregorian 
~alendar:~j  6* 29 

(defun nicaean-rule-easter (year) 
;; Absolute date of Easter in Julian yea?, according to the rule 
;; of the Council of Nicaea. 
(let* ((shifted-epact ;; Age of moon for April 5. 

(mod (+ 14 
(* 11 (mod year 19))) 

30)) 
(paschal-moon ;; Day after full moon on or after March 21. 
(- (absolute-f rom-julian (list 4 19 year) ) 

shifted-epact))) 
; ; Return the Sunday following the Paschal moon 

(Kday-on-or-before (+ paschal-moon 7) 0))) 

The Gregorian reform included, for the calculation of Easter, a far more accurate 
approximation to the lunar phases due to Clavius. Three corrections are employed: 
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0 The Gregorian change in the calendar (three out of four century years are com- 
mon years) is taken into account in the calculation of epacts. 

0 About every 222 years, a one-day correction is made to compensate for the 
inaccuracy of the Metonic cycle. 

0 There are approximately 29.5 days between successive new moons, while the 
lunar month in which Easter occurs is always taken to have 29 days, so an 
additional adjustment to the epact (which can take on 30 values) is sometimes 
needed.* 

This is the method now used:5* 6 i  30 

(defun easter (year) 
;; Absolute date of Easter in Gregorian year.  
(let* ((century (I+ (quotient year 100))) 

(shif ted-epact 

(+ 14 (* 11 (mod year 19) ) ; ;  

;; Age of moon for April 5... 
(mod . . .by Nicaean rule 

(- ;; ... corrected for the Gregorian century rule 
(quotient;; ... corrected for Metonic cycle inaccuracy. 
(* 30 century));; 

(quotient (* 3 century) 4) )  

(+ 5 (* 8 century)) 25) 
Keeps value positive. 

30)) 
(adjust ed-epact ,, .. Adjust for 29.5 day month. 
(if (or (= ehifted-epact 0) 

(and (= shifted-epact I) (< I 0  (mod year 19)))) 
;; Then 

;; Else 
(I+ shift ed-epact ) 

shifted-epact)) 
(paschal-moon;; Day after full moon on or after March 21. 
(- (absolute-from-gregorian (list 4 19 year)) 

adjusted-epact) ) ) 
;; Return the Sunday following the Paschalmoon. 

(Kday-on-or-before (+ paschal-moon 7) 0 ) ) )  

Many Christian holidays depend on the date of Easter: Septuagesima Sunday (63 
days before), Sexagesima Sunday (56 days before), Shrove Sunday (49 days before), 
Shrove Monday (48 days before), Shrove Tuesday (47 days before), Ash Wednes- 
day (46 days before), Passion Sunday (14 days before), Palm Sunday (seven days 
before), Maundy Thursday (three days before), Good Friday (two days before), Ro- 
gation Sunday (35 days after), Ascension Day (39 days after), Pentecost (also called 

‘The details of this adjustment were designed by Clavius to keep Easter within the same range of 
dates as in the Julian calendar, March 22 through April 25.” 
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Whitsunday-49 days after), Whitmundy (50 days after), Trinity Sunday (56 days 
after), and Corpus Christi (60 days after). All these are easily computed; for example 

(defun Pentecost (year) 
;; Absolute date of Pentecost in Gregorian year. 

(+ 49 (easter year))) 

Islamic Holidays 

Determining the absolute dates of Islamic holidays occurring in a given Gregorian 
year is complicated because an Islamic year is always shorter than the Gregorian year, 
so each Gregorian year contains parts of a t  least two and sometimes three successive 
Islamic years. Hence any given Islamic date occurs at least once and possibly twice 
in any given Gregorian year. For example, Islamic New Year (Muharram 1) occurred 
twice in 1943: on January 8 and again on December 28. Accordingly, we will approach 
the problem of the Islamic holidays by writing a general function to return a list of 
the absolute dates of a given Islamic date occurring in a given Gregorian year: 

(defun islamic-date (month day year) 
;; List of the absolute dates of Islamic month, day 
;; that occur in Gregorian year. 
(let* ((janl (absolute-from-gregorian (list I I year))) 

(dec31 (absolute-from-gregorian (list 12 31 year) ) )  
(y (extract-year (islamic-from-absolute jani))) 

(datei (absolute-from-ialamic (list month day y) 1) 
(date2 (absolute-from-islamic (list month day (I+ y)))) 
(date3 (absolute-from-islamic (list month day (+ 2 y)))))  

;; The possible occurrences in one year are 

;; Combine in one list those that occur in current year 
(append 
(if (C= jani datei dec3i) 

(list datei) nil) 
(if (<= jani date2 dec31) 

(list date21 n i l )  
(if (<= jani date3 dec31) 

(list date3) nil)) ) ) 

There is little uniformity among the Islamic sects and countries as to holidays. In 
general, the principal holidays of the Islamic year are Islamic New Year (Muharram 
l), Ashura (Muharram lo), Mulad-al-Nabi (Rabi I 12), Shab-e-Mi’raj (Rajab 26), 
Shab-e-Bara’t (Sha’ban 15), Ramadan (Ramadan l), Shab-e Qadr (Ramadan 27), 
Id-al-Fitr (Shawwal l), and Id-al-Adha (Dhu-al-Hijjah lo).* Like all Islamic days, 
an Islamic holiday begins a t  sunset the prior evening. We can determine a list of 

‘Other days, too, have religious significance, for example, the entire month of Ramadan. 
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the corresponding absolute dates of occurrence in a given Gregorian year by using 
islamic-date above, as in 

(defun mulad-al-nabi (year)  
;; List of absolute dates of Mulad-al-Nabi occurring in 
; ; Gregorian year.  
(iBlamic-date 3 12 year)) 

Islamic holidays begin at  sunset on the prior evening. It bears reiterating that the 
determination of the Islamic holidays cannot be fully accurate since the precise day 
of their occurrence is dependent on proclamation by religious authorities. 

Jewish Holidays 

As throughout this section, we consider our problem to be the determination of the 
Jewish holidays that occur in a specified Gregorian year. Since the Hebrew year is, on 
the average, consistently aligned with the Gregorian year, each Jewish holiday occurs 
just once in a given Gregorian year (with a minor exception noted below). The major 
holidays of the Hebrew year occur on fixed days on the Hebrew calendar, but occur 
only in fixed seasons on the Gregorian calendar.7* 24 They are easy to determine on 
the Gregorian calendar with the machinery developed above, provided we observe 
that the Hebrew year that began in the fall of 1 C.E. (Gregorian) was 3762 A.M., so 
we have the relation 

y + 3761 = Hebrew new year occurring in the fall of Gregorian year y. 

This means that holidays occurring in the fall and early winter of the Gregorian year 
y occur in the Hebrew year y + 3761, while holidays in the late winter, spring, and 
summer occur in Hebrew year y + 3760. For example, to  find the absolute date of 
Yom Kippur (Tishri 10) in a Gregorian year, we would use 

(defun yom-kippur (year) 
;; Absolute date of Yom Kippur occurring in Gregorian year.  
(absolute-from-hebrew (list 7 10 (+ year 3761)))) 

The absolute dates of Rosh HaShanah (Tishri l), Sukkot (Tishri 15), Hoshanah Rabba 
(Tishri 21), Shemini Azereth (Tishri 22), and S i d a t  Torah (Tishri 23, outside Israel) 
are identically determined. (See p. 800 of Winning Ways, Volume 2: Games in 
PurticzLZa72* for another way to  determine the date of Rosh HaShanah.) As on the 
Islamic calendar, all Hebrew holidays begin a t  sunset the prior evening. 

The dates of the other major holidays, Passover (Nisan 15), ending of Passover 
(Nisan 21), and Shavuot (Sivan S), are determined similarly, but since these holidays 
occur in the spring, the year corresponding to Gregorian year y is y + 3760.* Thus, 
for example, we determine the absolute date of Passover by 

'Conservative and Orthodox Jews observe two days Rosh HaShanah-Tishri 1 and 2. Outside 
Israel, they also observe Tishri 16, Nisan 16, Nisan 22, and Sivan 7 as holidays. 
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(defun passover (year) 
;; Absolute date of Passover occurring in Gregorian y e a r .  
(absolute-from-hebrew (list I I S  (+ year 3760)))) 

(Gauss developed an interesting formula to determine the Gregorian date of Passover 
in a given year.20) 

The minor holidays of the Hebrew year are the ‘intermediate’ days of Sukkot (Tishri 
16-21) and Passover (Nisan 16-20), Hanukkah (eight days, beginning on Kislev 25), 
Tu-B’Shevat (Shevat 15), and Purim (Adar 14 in normal years, Adar II 14 in leap 
years). Hanukkah occurs in late fall/early winter, so Hanukkah of Gregorian year y 
occurs in the Hebrew year y + 3761, while Tu-B’Shevat occurs in late winter/early 
spring and hence Tu-B’Shevat of Gregorian year y occurs in Hebrew year y+3760; thus 
these two holidays are handled as were Rosh HaShanah and Passover, respectively. 
Purim always occurs in late winter or early spring, so its absolute date is computed 
by 

(defun purim (year) 
;; Absolute date of Purim occurring in Gregorian y e a r .  
(absolute-from-hebrew 
(list 
(last-month-of-hebrew-year (+ year 3760));; Adar or Adar I1 
14 
(+ year 3760)))) 

The Hebrew year contains several fast days that, though specified by particular 
Hebrew calendar dates, are shifted when those days occur on Saturday. The fast days 
are Tzom Gedaliah (Tishri 3), Tzom Teveth (Teveth lo),  Ta’anit Esther (the day 
before Purim), Tzom Tammu (Tammuz 17), and Tisha B’Av (Av 9). When Purim 
is on Sunday, Ta’anith Esther occurs on the preceding Thursday, so we can write 

(defun ta-anit-esther (year) 
;; Absolute date of Purim occurring in Gregorian yea?. 
(let* ((Purim-date (purim year))) 
(if ;; Purim is on Sunday 

(= (mod purim-date 7) 0) 
;; Then return prior Thursday 

(- purim-date 3) 
;; Else return previous day 
(I- purim-date)))) 

Each of the other fast days, as well as Shushan Purim (the day after Purim, celebrated 
in Jerusalem), is postponed to the following day (Sunday) when it occurs on Saturday. 
Since Tzom Gedaliah is always in the fall, while Tzom Tammuz and Tisha B’Av axe 
always in the summer, their determination is easy. For example, 
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(defun tisha-b-av (year) 
;; Absolute date of Tisha B’Av occurring in Gregorian yea?. 
(let* ((ninth-of-av 

(absolute-from-hebreu (list 5 9 (+ year 3760))))) 
(if ;; Ninth of Av is Saturday 

(= (mod ninth-of-av 7) 6) 

(I+ ninth-of -av) 
;; Then return the next day 

;; Else return 
ninth-of-av))) 

Tzom Teveth, which can never occur on Saturday, should be handled Like Islamic 
holidays because Teveth 10 can fall on either side of January 1, so a single Gregorian 
calendar year can have zero, one, or two occurrences of Tzom Teveth. For example, 
Tzom Teveth occurred twice in 1982, but not at all in 1984. We leave it to the reader 
to work out the details. 
On the Hebrew calendar, the first day of each month except Tishri is called Rosh 

Hodesh and has minor ritual significance. When the preceding month has 30 days, 
Rosh Hodesh includes also the last day of the preceding month. The determination 
of these days is elementary. Some other dates of significance depend on the Julian 
approximation of the tropical year in which each of the four seasons is taken to be 
91.3125 days long.’ 

Finally, the Hebrew calendar contains what we might term ‘personal’ days: One’s 
birthday according to the Hebrew calendar determines the day of one’s But (for girls) 
or BUT (for boys) Mitzvah (the twelfth or thirteenth birthday). Dates of death de- 
termine when Kaddish is recited (yuhTzeits) for parents (and sometimes for other 
relatives). These are ordinarily just anniversary dates, but the leap year structure 
and the varying number of days in some months require that alternative days be used 
in certain years, just as someone born February 29 on the Gregorian calendar has to 
substitute an alternate day in common years. 

The particular alternatives are best described algorithmically; since the problem 
here is the determination of a date in a given Hebrew year, we write the functions in 
that way:+ 

(defun hebrew-birthday (birthdate year) 
;; Absolute date of the anniversary of Hebrew birthdate 
; ; occurring in Hebrew yea?. 
(let* ((birth-day (extract-day birthdate)) 

(birth-month (extract-month birthdate) 

*By one traditional Hebrew reckoning, the vernal equinox of year 5685 A.M. was at 6 p.m. Wednes- 
day evening, March 26, 1925 C.E. (Julian). It recurs on that day of the Julian calendar and at that 
hour of the week every 28 years (barkhat hahoma). The beginning of ah’ela (request for rain) outside 
Israel in Julian year y (meant to correspond to 60 days after the autumnal equinox) is absolute day 
(- (absolute-from-julian (list 3 26 (1+ y))) 124). See Spier’s The Comprehensive Hebrew 
Calendar.“ 

‘There are minor variations in custom regarding the date of yahrzeit in some of these cases, but 
they need not concern us here. 
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(birth-year (extract-year birthdate) ) 
(if ;; It’s Adar in a normal year or Adar I1 in a leap year, 

(= birth-month (last-month-of-hebrea-year birth-year)) 

(absolute-from-hebreu 
;; Then use the same day in last month of year. 

(list (last-month-of-hebrea-year year) birth-day year)) 
;; Else use the normal anniversary of the birth date, 
;; or the corresponding day in years without that date 

(absolute-from-hebrea (list birth-month birth-day year)) ) )) 

This code takes advantage of the fact that absolute-from-hebrea works for dates 
(month i year )  and always returns the absolute date of the (i - 1)st day after (month 
1 year ) ,  even if the month has fewer than i days. 

(defun yahrzeit (death-date year) 
;; Absolute date of the anniversary of Hebrew death-date 
;; occurring in Hebrew yea?. 
(let* ((death-day (extract-day death-date)) 

(death-month (extract-month death-date)) 
(death-year (extract-year death-date)) ) 

(cond 
;; If it’s Beshvan 30 it depends on the first anniversary; if 
;; that was not Heshvan 30, use the day before Kislev 1 .  
((and (= death-month 8) 

(= death-day 30) 
(not (long-heshvan (I+ death-year) ) ) ) 

(I- (absolute-from-hebreu (list 9 I year)))) 
;; If it’s Kislev 30 it depends on the first anniversary; if 
;; that was not Kislev 30, use the day before Teveth I. 
((and (= death-month 9) 

(= death-day 30) 
(short-kislev (I+ death-year))) 

(I- (absolute-from-hebreu (list 10 1 year)))) 
;; If it’s Adar 11, use the same day in last month of 
;; year (Adar or Adar 11). 
((= death-month 13) 
(absolute-from-hebrea 
(list (last-month-of-hebrea-year year) death-day year))) 

;; If it’s the 30th in Adar I and yeaz is not a leap year 
;; (so Adar has only 29 days), use the last day in Shevat. 
((and (= death-day 30) 

(= death-month 12) 
(not (hebrew-leap-year death-year))) 

(absolute-from-hebrea (list 11 30 year))) 
;; In all other cases, use the normal anniversary of the 
; ; date of death. 
(t (absolute-from-hebrea 

(list death-month death-day year) 1) 
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The cond statement Lists a sequence of tests and values, like a generalized case state- 
ment. 

OTHER CALENDARS 

In this section, we briefly describe two calendars for which we would have Liked to 
provide algorithms . 

Hindu Calendars 

The Hindu calendar is a luni-solar calendar based on approximations to the true 
astronomical day, synodic month, and sidereal year, rather than to their mean values, 
as is the case for the calendars considered in previous sections. There are three 
main variations in use in India; the one based on the S.iirya-Siddhiinta (circa 1000 
c.E.) uses a value of 365.258756481481 -.- days for the length of the sidereal year. 
Days of a month are numbered according to the computed phase of the moon at 
sunrise (in a particular location). Months are named according to the position of 
the sun in the zodiac at the computed time of new (or, in some variations, full) 
moon (itself a function of the sun’s position). Since the true solar and lunar motions 
across the celestial sphere vary in speed, this method of reckoning leads occasionally 
to consecutive days bearing the same ordinal number, to skipped numbers, and, 
similarly, to repeated and lost 34 

The necessary computational mechanisms for handling the Hindu calendars are far 
too complex for inclusion in this paper.35 Indeed, as van Wijk ‘The rules 
the Siirya-Siddhata gives for calculating the time of true sunrise are exceedingly 
complicated, and inapplicable in practice.’ 

The Chinese Calendar 

The Chinese year consists of twelve lunar months in a common year and thirteen 
lunar months in a leap year. Chinese New Year occurs at the beginning of the lunar 
month during which the sun’s tropical longitude is 330 degrees.36 

The Chinese calendar is similar to the Hindu in its  use of true values for solar and 
lunar events. Unlibe the Hindu calendars, the Chinese calendar makers use modern 
astronomy to decide close calls (whether the sun and moon at the point of true 
conjunction are in one constellation or in another). The formulae of the ephemerisg 
can be used for this purpose, but require floating point arithmetic, and are not valid 
over extended periods of time. For these reasons, we have not included Lisp functions 
for the Chinese calendar or the determination of Chinese New Year in this paper. 
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