
501 ‘I \\ARE-PR i C 7 ICE I N D EXPERIENCE, \ O L 20(9), 899-928 (SEP’I EMBER 1990)

Calendrical Calculations

NACHUM DERSHOWITZ AND EDWARD M. REINGOLD
Department of Computer Science, University of Illinois at Urbana- Champaign,

1304 W . Springfield Avenue, Urbana, II, 618014987, U.S.A.

SUMMARY
A unified, algorithmic presentation is given for the Gregorian (current civil), ISO, Julian
(old civil), Islamic (Moslem), and Hebrew (Jewish) calendars. Easy conversion among
these calendars is a byproduct of the approach, as is the determination of secular and
religious holidays.
KEY WO-S Calendar Holidays Gregorisn calendar Hebrew calendar Islamic calendar IS0 calendar
Julian calendar

Teach us to number our days, that we may attain a wise heart.
--PS&S 90~12

INTRODUCTION

Calendrical calculations are ubiquitous. Banks need to calculate interest on a daily
basis. Operating systems need to switch to and from daylight savings time. Dates
of secular and religious holidays need to be computed for consideration in planning
events. Paychecks need to be issued on weekly, biweekly, or monthly schedules. Bills
and statements must be generated periodically. Most of these calculations are not
difEcult because the rules of our civil calendar (the Gregorian calendar) are straight-
forward.

Complications begin when we need to know the day of the week on which a given
date falls or when various religious holidays based on other calendars occur. These
complications lead to difficult programming tasks-not difficult in an algorithmic
sense, but difficult because it can be extremely tedious to delve, for example, into the
complexities of the Hebrew calendar and its relation to the civil calendar.

The purpose of this paper is to present, in a completely algorithmic form, a de-
scription of five basic calendars and how they relate to one another: the present
civil calendar (Gregorian), the recent IS0 commercial calendar, the old civil calendar
(Julian), the Islamic (Moslem) calendar, and the Hebrew (Jewish) calendar. Infor-
mation that is sufficiently detailed to allow computer implementation is difficult to
find for the Islamic and Hebrew calendars since the published material is often inac-
cessible, ecclesiastically oriented, incomplete, inaccurate, based on extensive tables,
overburdened with extraneous material, focused on shortcuts for hand calculation to

0038-0644/90/090899-30~15 .OO
@ 1990 by John Wile! & Sons, Ltd.

Received 31 Aiigust 1989
Rerised 27 March 1990

900 N. DERSHOWITZ AND E. M. REINGOLD

avoid complicated arithmetic or to check results, or diAicult to fmd in English. Most
existing computer programs are proprietary, incomplete, or inaccurate.

The need for such a secular presentation in the public domain was made clear to us
when the second author, in implementing a calendar/diary feature for GNU Emacs,'
found difficulty in gathering and interpreting appropriate source materials that de-
scribe the interrelationships among the various calendars and the determination of
the dates of holidays. The material presented in this paper, in the form of COM-
MON LISP^ functions, unifies the calculations for all five calendars.* We have chosen
Lisp as the vehicle for implementation because it encourages functional programming
and has a trivial syntax, nearly self-evident semantics, historical durability, and wide
dis tribution.

It is not the intention of this paper to give a detailed historical treatment of the
material, nor, for that matter, a mathematical one; our goal is to give a computa-
tional treatment that will prove useful to programmers. Thus, although we give some
necessary historical, religious, mathematical, and astronomical details in the text,
the focus of the presentation is in the Lisp functions. Full historical/religious details
and mathematical/astronomical underpinnings of the calendars can be pursued in
the references. We have chosen not to optimize the code at the expense of algorith-
mic clarity; consequently, considerable improvements in economy are possible (some
possibilities are pointed out).

In the next section we describe the underlying d y i n g idea of all the calculations.
The details of specific calendars are presented in subsequent sections. Historically,
the oldest of the calendars that we consider is the Julian (the roots of which date
back to the ancient Roman empire). Next oldest is the Hebrew calendar (fourth cen-
tury), followed by the Islamic calendar (seventh century), followed by the Gregorian
modification to the Julian calendar (sixteenth century). Finally, the International
Organization for Standardization's IS0 calendar is of twentieth century origin. For
expository purposes, however, we present the Gregorian calendar first because it is
the most popular calendar currently in use; then we give the IS0 calendar which de-
pends wholly on the Gregorian. Since the Julian calendar is so close in substance to
the Gregorian, we present it next. Then we give the Islamic calendar which, because
of its simplicity, is easy to implement. Finally, we present the Hebrew calendar, the
most complicated of the five calendars, and the most difficult to implement. In the
penultimate section, we give algorithms for calculating the dates of all major and
many minor secular and religious holidays. The find section contains descriptions of
two other calendars for which we do not provide algorithmic details.

ABSOLUTE DAY NUMBERS

Over the centuries, human beings have devised an enormous variety of methods for
specifying (An exceptional survey can be found in the Encyclopedia of
Religion and Ethics,' vol. III, pp. 61-141 and vol. V, pp. 835-894.) None are ideal

'To insure correctness, all code in this paper was typeset directly fiom working Lisp functions. We
wi l l gladly provide these Lisp functions in electronic form: send an empty electronic mail message to
raingoldQcs .ninc .edn with the subject line containing precisely the phrase 'send-cal'; your message
wi l l be answered automatically.

CALENDFUCAL CALCULATIONS 90 1

computationally, however, because all have idiosyncrasies resulting from attempts to
coordinate a convenient human labeling with lunar and/or solar phenomena. All of
the calendars that we consider have an integral number of days in a month and an
integral number of months in a year, but the astronomical events with which they
are supposed to correlate do not follow such a convenient pattern, nor are the precise
lengths of astronomical cycles constant over time. Rather, the mean length of a
(synodic) month is currently 29.5306 (mean) days and the current mean length of a
(tropical) year is 365.2422 days. The Merent calendars differ in the accuracy with
which their months and years approximate these figures.

For a computer implementation, the easiest way to reckon time is simply to count
days: Establish an arbitrary starting point as day 1 and specify a date by giving
a day number relative to that starting point;' a single thirty-two bit integer allows
the representation of more than 11.7 million years. Such a reckoning of time is,
evidently, extremely awkward for human beings and is not in common use, except
among astronomers who use Julian day numbers to specify dates.@

We have chosen Monday, January 1,l c.E.* (Gregorian) as our absolute date 1 and
count forward day-by-day from there. Of course, this is anachronistic because there
was no year 1 C.E. on the Gregorian calendar-the Gregorian calendar was devised
only in the sixteenth century-so by January 1, 1 C.E. (Gregorian) we mean the day
we get if we extrapolate backwards from the present; this day turns out to be Monday,
January 3, 1 C.E. (Julian).

We should thus think of the passage of time as a sequence of days numbered 1,
2, 3, . . . that the various human-oriented calendars label differently. For example,
absolute day 710347 is called November 12, 1945 C.E. on the Gregorian calendar,
day 1 of week 46 of 1945 c.E. on the I S 0 calendar, October 30, 1945 C.E. on the
Julian calendar, Dhu al-Hijjah 6, 1364 A . H . ~ on the Islamic calendar, and Kislev 7,
5706 A.M.$ on the Hebrew calendar. All that is required for calendrical conversion
is to be able to convert to and from this absolute calendar. We give, in subsequent
sections, Lisp functions to do the conversions for the Gregorian, ISO, Julian, Islamic,
and Hebrew calendars. The algorithms given in this paper do not generally work for
non-positive absolute dates.

The date Monday, January 1, 1 C.E. (Gregorian), though arbitrarily chosen as our
starting point, has two desirable characteristics. First, it is early enough that almost
all dates of interest are represented by positive integers; in any case, using any earlier
date would be problematic because of historical irregularities in the application of
the Julian leap year rule. Second, since the day is a Monday, determining the day of
the week amounts to taking the absolute date modulo seven-zero is Sunday, one is
Monday, and so forth.

LISP PRELIMINARIES
For readers unfamiliar with Lisp, this section provides the bare necessities. Other
details will be mentioned in passing as they are used; a complete description can be
found in COMMON LISP: The Language.2

*Common era; or, A.D.
'Anno hegiroc; in the year of the Hegira (Mohammed's fight to Medina).
*Anno rnundi; in the (traditional) year of the world (since creation).

902 N. DERSHOWITZ AND E. M. REINGOLD

All functions in Lisp are written in prefix notation: If f is a defined function, then
(f eO e i e2 ... en)

applies f to the n f 1 arguments eo, e l , 82, . . . , en. Thus

(t I -2 3)

adds the three numbers and returns the value 2;

(<= 1 2 3)

checks that the three numbers are in nondecreasing order and yields true (t in Lisp).
Lists are Lisp’s main data structure. To construct a list (e0 e l 82 . . . en) the

expression

(l i s t eO e l e2 ... en)

is used. The function (nth i 1) extracts the i th element of the list 1, indexing from
zero; the predicate (member x 1) tests i f x is an element of 1. To get the first (indexed
zero), second, or third elements of a list, we use the functions first, second, and
third, respectively. The empty list is represented by n i l .

Functions are defined using the defun command, which has the following syntax:

(defun function-name (paraml ... paramn)
expression)

For example, we can define a function (unavailable in COMMON LISP) to return the
(truncated) integer quotient of two integers:

(defun quotient (m n)
(floor (/ m n)))

We will represent all dates on the Gregorian, Julian, Islamic, and Hebrew calendars
by a list of the form (month day year) in which month, day, and year are each
integers. (COMMON LISP places no a priori upper bound on the size of integers; none
of our calculations require more than 32-bit integers for dates in the next twenty
thousand years; 24 bits suffice for all of the calculations, except as noted.) To extract
the individual components of such a date we use the following access functions:

(defun extract-month (date)
;; Month f i e l d of date = (month day year).

(f i r s t date))

(defun extract-day (date)
; ; Day f i e l d of date = (month day year).

(second date))

(defun extract-year (date)
;; Year f i e l d of date = (month day year).

CALENDFUCAL CALCULATIONS 903

(third date))

Notice that the double semicolons demarcate comments.

to compute sums. The expression
For convenience in expressing our calendar functions in Lisp, we introduce a macro

(sum f i k p)

computes '&k,p(i) f (i) ; that is, the expression f (i) is summed for all i = H, H + 1,
. . . , continuing only as long as the conditionp(i) holds. The (opaque) COMMON LISP
definition of sum is as follows:

(defmacro sum (expression index initial condition)
;; sum expession f o r index = initial and successive integers,
; ; as long as condition holds.

(let* ((temp (gensym)))
'(do ((,temp 0 (+ ,temp ,expression))

((not ,condition) ,temp))))
(,index ,initial (I+ ,index)))

THE GREGORIAN CALENDAR
The calendar in use today in most countries is the new style, or Gregorian, cal-
endar designed by a commission assembled by Pope Gregory XIII in the sixteenth
~en tu ry .~ , 6* 6, This strictly solar calendar is based on a 365-day common year
divided into twelve months of lengths 31, 28, 31, 30, 31,30, 31, 31, 30, 31, 30, and 31
days, and on 366 days in leap years, the extra day being added to make the second
month 29 days long:

31 days
31 days (2) February 28 (29) days (8) August

(3) March 31 days (9) September 30 days
(4) April 30 days (10) October 31 days
(5) May 31 days (11) November 30 days
(6) June 30 days (12) December 31 days

The leap-year structure is given in curly brackets-a year is a leap year if it is divisible
by 4 and is not a century year (multiple of 100) or if it is divisible by 400. For example,
1900 was not a leap year, while 2000 will be. The Gregorian calendar differs from its
predecessor, the old style or Julian calendar, only in that the Julian calendar did not
include the century rule for leap years-all century years were leap years.

The Julian calendar was instituted in 45 B.c.E.* by Julius Caesar on January 1, 709
A.u .c .~; it was a modification of an ancient Egyptian calendar. Since every fourth

(1) January 31 days (7) J d Y

*Before the common era; or, B.C.
' A b urbe condita; from the (traditional) founding of the city (of Rome).

904 N. DERSHOWITZ AND E. M. REINGOLD

year was a leap year, a cycle of 4 years contained 4 x 365 + 1 = 1461 days, giving
an average length of year of 365.25 days. This is somewhat more than the mean
length of the solar year, and over the centuries the calendar slipped with respect to
the solar year. By the sixteenth century, the date of the vernal (spring) equinox had
shifted from around March 21 to around March 11. If this error were not corrected,
eventually Easter, the date of which depends on the vernal equinox, would migrate
through the whole calendar year. Pope Gregory instituted only a minor change in the
calendar-century years not divisible by 400 would no longer be leap years. Thus,
three out of four century years are common years, giving a cycle of 400 years containing
400 x 365 + 97 = 146097 days and an average year length of 146097/400 = 365.2425
days. He also corrected the accumulated 10-day error in the calendar by proclaiming
that Thursday, October 4, 1582 c.E., the last date in the old style (Julian calendar),
would be followed by Friday, October 15, 1582 c.E., the first day of the new style
(Gregorian) calendar. Catholic countries followed his rule, but Protestant countries
resisted: Spain, Portugal, and Italy adopted it immediately, as did the Catholic states
in Germany. The Protestant parts of Germany waited until 1700 to adopt it, Great
Britain and its colonies (including the United States) waited until 1752, Russia held
out until after the revolutionin 1918, and Bulgariauntill920 (an extensive list of dates
of adoption of the Gregorian calendar can be found in the Ezplanatory Supplement to
the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac’).

To convert from a Gregorian date to an absolute date, we first need a function that
gives the last day (that is, the number of days) for any Gregorian month. This is
easily written:

(defun last-day-of-gregorian-month (month year)
; ; Last day in Gregorian month during year.
(if ; ; February in a leap year

(and (= month 2)
(= (mod year 4) 0)
(not (member (mod year 400) (list 100 200 300))))

;; Then return
29

;; Else return
(nth (1- month)

(list 31 28 31 30 31 30 31 31 30 31 30 31))))

The function i f has three arguments, a Boolean condition, a then-expression, and an
else-expression. The function 1- decrements an integer by one (the similar function
l+ increments by one). Here, and elsewhere, arrays would be more efficient than lists.

The calculation of the absolute date from the Gregorian date (which has been
described’ as ‘impractical’) can now be done by counting the number of days in
prior years-both common and leap years, the number of days in prior months of the
current year, and the number of days in the current month:

(defun absolute-from-gregorian (date)
;; Absolute date equivalent to the Gregorian date.
(let* ((month (extract-month date))

CALENDRTCAL CALCULATIONS 905

(year (extract-year date)))
;; Return

(+ (extract-day date) ; ; Days so far this month.
;; Days in prior months this year.

; ; Days in prior years.

(sum

(* 365 (I- year))
(quotient (1- year) 4); ; Julian leap days in prior years...
(- ;; ... minus prior century years...

(last-day-of-gregorian-month rn year) m I (< m month))

(quotient (I- year) 100))

(I- year) 400)))) ;; ... by 400.
(quotient .. ,, ...p lus prior years divisible...

The COMMON LISP construct let* defines a sequence of constants (possibly in terms
of previously defined constants) and ends with an expression the value of which is
returned by the construct.

Calculating the Gregorian date from the absolute date d involves sequentially deter-
mining the year, month, and day of the month. The year is first closely approximated
from below by Ld/366] and then found precisely by stepping through subsequent years
(that is, by a linear search). The month is then found by a similar linear process, and
the day of the month is determined by subtraction:

(defun gregorian-from-absolute (date)
;; Gregorian (month day year) corresponding absolute date.
(let* ((approx (quotient date 366));; Approximation from below.

; ; Search forward from the approximation. (year
(+ approx

(sum I y approx
(>= date

(absolute-from-gregorian
(list i i (I+ y)))))))

(month ;; Search forward from January.
(it (sum I m I

(> date
(absolute-from-gregorian
(list m

(last-day-of-gregorian-month m year)
year)) 1) 1)

(day ;; Calculate the day by subtraction.
(- date (I- (absolute-from-gregorian

(list month I year))))))
;; Return

(list month day year)) >

It is not hard to determine better approximations for the year, and the same is true
for the approximations we will use for other calendars. In fact, the year can be

906 N. DERSHOWITZ AND E. M. REINGOLD

determined ezactly without searching, but at considerable expense in the clarity of
the code.*

THE I S 0 CALENDAR
The International Organization for Standardization (ISO) calendar, popular in Swe-
den and other European countries, specifies a date by giving the ordinal day in the
week and the 'calendar week' in a Gregorian year. Section 3.17 of the IS0 standardls
defines a calendar week as

A seven day period within a calendar year, starting on a Monday and
identified by its ordinal number within the year; the first calendar week
of the year is the one that includes the first Thursday of that year. In
the Gregorian calendar, this is equivalent to the week which includes 4
January.

Determining the beginning of the first calendar week of a Gregorian year thus
requires determining the Monday on or before January 4 of that year. Since we will
need similar determinations for some of the holidays, discussed in a later section, we
encapsulate the formula d - ((d - k) mod 7) to find the kth day of the week (k = 0
for Sunday, and so on) that falls in the seven-day period ending on absolute date d:

(defun Kday-on-or-before (date k)
; ; Absolute date of the kday on or before date.
;; k = 0 means Sunday, k = 1 means Honday, and so on.

(- date (mod (- date k) 7)))

Applying Kday-on-or-before to d + 6 gives us the Kday-on-or-after an absolute
day d. Similarly, applying it to d + 3 gives the Kday-nearest to absolute date d,
applying it to d - 1 gives the Kday-previous to absolute date d, and applying it to
d + 7 gives the Kday-f ollouing absolute date d.

The I S 0 calendar counts Sunday as the seventh day of the week (throughout this
paper we have otherwise counted it as the zeroth day of the week), so we implement
this calendar as follows:

*The exact determination of the Gregorian year from the absolute date is an exercise in base
conversion in a mixed-radix system" :

n400 = [(date - 1)/146097J
d~
n l O O = (d, - 1)/36524J 2 1 1 - 1) mod 36524

ds = dz - 1) mod 1461
nl - (ds - 1)/3651
d4

= (dote - 1) mod 146097

(d, - 1)/14611

Ids - 1) mod 365

{number of completed 400 year cycles}
{days not included in n4oo)
{number of 100 year cycles not included in n r o o }
{days not included in n400 or n l o o }
{number of 4 year cycles not included in n400 or n l o o }
{days not included in n400 , n l o o , or n4}
{number of years not included in n 4 0 0 , n l o o , or n4)
{days not included in n 4 0 0 , n l o o , n 4 , or nl}

date is ordinal day d4 in Gregorian year 400 x n 4 0 0 + 100 x n100 + 4 x n4 + nl + 1
Similar calculations can be used for the Julian, Islamic, or Hebrew calendars.

CALENDFUCAL CALCULATIONS 907

(defun absolute-from-iso (date)
;; Absolute date equivalent to IS0 date = (week day year).
(let* ((week (first date))

(day (second date))
(year (third date))) ..

y y Return
(t (Kday-on-or-before

(absolute-from-gregorian (list 1 4 year))
1) ;; Days in prior years.

(* 7 (I- week))
(I- day)))) ;; Prior days this week.

; ; Days in prior weeks this year.

(defun iso-from-absolute (date)
; ; IS0 (week day year) corresponding to the absolute date.
(let* ((approx

(extract-year (gregorian-from-absolute (- date 3))))
(year (if (>= date

(absolute-from-is0 (list i 1 (I+ approx))))
;; Then

;; Else
(i+ approx)

approx) 1
(week (it (quotient

(- date (absolute-from-iso (list 1 I year)))
7)))

(day (if (= 0 (mod date 7))
;; Then

7
;; Else

(mod date 7)))) .. ,, Return
(list week day year)))

THE JULIAN CALENDAR

The calculations for the Julian calendar, which we described in our discussion of the
Gregorian calendar, are nearly identical to those for the Gregorian calendar, but we
must change the leap-year rule used in determining the last day of a month:

(defun last-day-of-julian-month (month year)
;; Last day in Julian month during yeaT.
(if ;; February in a leap year

(and (= month 2) (= (mod year 4) 0))
;; Then return

29

908 N. DERSHOWITZ AND E. M. REINGOLD

;; Else return
(nth (1- month) (list 31 28 31 30 31 30 31 31 30 31 30 31))))

Converting from a Julian date to an absolute date requires a calculation similar
to that in the Gregorian case, but with two minor adjustments: We no longer need
consider century-year leap days, but we subtract 2 because absolute date 1 is January
3, 1 C.E. (Julian), and so the first two days of 1 C.E. (Julian) must be excluded.

(defun absolute-from-julian (date)
;; Absolute date equivalent to Julian date.
(let* ((month (extract-month date))

(year (extract-year date)))
;; Return

(+ (extract-day date) ; ; Days so far this month.
;; Days in prior months this year.

;; Days in prior years.

;; Days elapsed before absolute date 1.

(

(* 365 (I- year))
(quotient (1- year) 4) ; ; Leap days in prior years.
-2) 1)

(last-day-of-julian-month m year) m 1 (< m month))

Except for obvious changes in reference from Gregorian to Julian, conversion of
absolute dates to Julian dates is identical to conversion of absolute dates to Gregorian
dates.

(def un julian-f rom-absolut e (date)
;; Julian (month day year) corresponding to absolute date.
(let*

((approx ;; Approximation from below.
(quotient (+ date 2) 366))

; ; Search forward from the approximation.
(+ approx
(year

(sum 1 y approx
(>= date

(absolute-from-julian (list 1 1 (it y)))))))
;; Search forward from January. (month

(i+ (sum 1 m I
(> date

(absolute-from-julian
(list m

(last-day-of-julian-month m year)
year))) I))

(day ;; Calculate the day by subtraction.
(- date (1- (absolute-from-julian (list month 1 year))))))

;; Return
(list month day year)))

CALENDFUCAL CALCULATIONS 909

THE ISLAMIC CALENDAR

The Islamic ~ a l e n d a r ~ - ~ * l6, l7 is a straightforward, strictly lunar calendar. Its inde-
pendence of the solar cycle means that its months do not occur in fixed seasons, but
migrate through the solar year. Days begin at sunset.

The calendar is computed, by the majority of the Moslem world, starting a t sunset
of Thursday, July 15, 622 C.E. (Julian), the year of Mohammed's flight to Medina.
In essence, Moslems count absolute date 227015 = Friday, July 16, 622 C.E. (Julian)
as the beginning of the Islamic year 1, that is, as Muharram 1, 1 A.H. There are 12
Islamic months which contain, alternately, 29 or 30 days:

(1) Muharram 30 days (7) Rajab 30 days
(2) safar 29 days (8) Sha'ban 29 days
(3) Rabi I 30 days (9) Ramadan 30 days
(4) Rabi I1 29 days (10) Shawwal 29 days
(5) Jumada I 30 days (11) Dhu al-Qada 30 days
(6) Jumada I1 29 days (12) Dhu al-Hijjah 29 (30) days

The leap-year structure is given in curly brackets-the last month, Dhu 4-Hijjah,
contains 30 days in the 2nd, 5th, 7th, loth, 13th, 16th, 18th, 21st, 24th, 26th, and
29th years of a 30-year cycle.* This gives an average month of 29.5305555.. - days.
The cycle of common and leap years can be expressed concisely (but obfuscatingly!)
by observing that an Islamic year y is a leap year if and only if (113 + 14) mod 30 is
less than 11.

Determining the last day of an Islamic month is thus done by

(defun islamic-leap-year (year)
;; True if year is an Islamic leap year.

(< (mod (t 14 (* 11 year)) 30) 11))

(defun last-day-of -islamic-month (month year)
;; Last day in month during year on the Islamic calendar.
(if (or (oddp month)

(and (= month 12) (islamic-leap-year year)))
;; Then return

30
;; Else return

29))

The function oddp tests for odd integers. (It would be more efficient to compute
islamic-leap-year by looking up the value in a 30-bit table.)

Converting from an Islamic date to an absolute date is done by summing the days
so far in the current month, the days so far in the current Islamic year, the non-leap
days in prior Islamic years, the leap days in prior Islamic years, and the days prior to
the Islamic calendar.

'A minority of Moslems have a slightly Merent leap year structure.

910 N. DERSHOWITZ AND E. M. REINGOLD

(defun absolute-from-islamic (date)
;; Absolute date equivalent to Islamic date .
(let* ((month (extract-month date))

(year (extract-year date)))
(+ (extract-day date) ;; Days so far this month.

(* 29 (I- month))
(quotient month 2) .. 9 9 ... this year.
(* (1- year) 354)
(quotient ;; Leap days in prior years.

227014))) ;; Days before start of calendar.

;; Days so far...

;; Non-leap days in prior years.

(+ 3 (* I 1 year)) 30)

Computing the Islamic date equivalent to a given absolute date is done almost iden-
tically to the computations for the Gregorian and JuLian calendars: We approximate
the year and search linearly for the exact value; then we find the month by Linear
search and the day of the month by subtraction.

(defun islamic-from-absolute (date)
;; Islamic date (month day year) corresponding to absolute date.
(if ;; Pre-Islamic date.

(<= date 227014)

(list 0 0 0)
;; Then return

;; Else
(let* ((approx ;; Approximation from below.

(quotient (- date 227014) 3 5 5))

(+ approx
(year ;; Search forward from the approximation.

(sum i y approx
(>= date

(absolute-from-islamic

(month ;; Search forward from Muharram.
(list i 1 (I + y)))))))

(I+ (sum I m I
(> date

(absolute-from-islamic
(list m

(last-day-of-islamic-month m year)
year) 1) 1) 1

(day ;; Calculate the day by subtraction.

(list month I year))))))
(- date (1- (absolute-from-islamic

;; Return
(list month day year))))

CALENDRICAL CALCULATIONS 91 1

It is important to realize that, to some extent, the above calculations are merely
hypothetical because there are many disparate forms of the Islamic ~alendar .~ Fur-
thermore, much of the Islamic world relies not on such calculations at all, but on
proclamation of the new moon by religious authorities. Consequently, the dates given
by the Lisp functions here can be in error by a day or two from what will actually be
observed in various parts of the Islamic world; this is unavoidable.

THE HEBREW CALENDAR

The Hebrew calendar4-‘) “9 18-25 promulgated by Hillel 11 in the mid-fourth century,
is by far the most complicated of the five calendars that we consider. Its complexity
is inherent in the requirement that calendar months must be strictly lunar while
Passover must always occur in the spring. Since the seasons are dependent on the
solar year, the Hebrew calendar must harmonize simultaneously with both lunar and
solar events. As in the Islamic calendar, days begin at sunset.

The Hebrew year consists of twelve months in a common year and thirteen in a
leap year:

(1) Nisan 30 days (7) Tishri 30 days
(2) I Y Y a r 29 days (8) Heshvan 29 or 30 days
(3) Sivan 30 days (9) Kislev 29 or 30 days
(4) Tammuz 29 days (10) Teveth 29 days

30 days (11) Shevat 30 days
29 days { (12) Adar I 30 days} (6) Elul

29 days

(5) Av

(12) ((13)) Adar {11}

The leap-year structure is given in curly brackets-in a leap year there is an interpo-
lated twelfth month of 30 days called ‘Adar I’ to distinguish it from the final month,
‘Adar II’. The length of the eighth and ninth months vary from year to year according
to criteria that will be explained below. Our ordering of the Hebrew months follows
biblical custom (Leviticus 23:5) in which (what was later called) Nisan is the first
month. This numbering causes the Hebrew new year (Rosh HaShanah) to begin on
the first of Tishri which, by our ordering, is the seventh month-but this too agrees
with biblical usage (Leviticus 23:24). Adding up the lengths of the months, we see
that a normal year has 353-355 days, whereas a leap year has 383-385 days.

The so-called Metonic cycle is based on the observation that 19 mean solar years
contain almost exactly 235 lunar months. This correspondence, known to ancient
Babylonian astronomers, makes a solar/lunar calendar feasible. The 235 = 12 x 12 +-
7 x 13 months in the cycle. are divided into twelve years of twelve months and seven
years of thirteen months. The Metonic cycle is used in the Hebrew calendar and also
for the calculation of Easter (as we discuss in the section on holidays).

In the Hebrew calendar, leap years occur in the 3rd, 6th, 8th, l l th, 14th, 17th, and
19th years of the 19-year cycle. As in the Islamic leap-year structure, this sequence
can be computed concisely by noting that Hebrew year y is a leap year if and only if
(7y + 1) mod 19 is less than 7. Thus we determine whether a year is a Hebrew leap
Ye= by

912 N. DERSHOWITZ AND E. M. FLEINGOLD

(defun hebreu-leap-year (year)
;; True if year is a leap year.

(< (mod (I+ (* 7 year)) 19) 7))

(defun last-month-of -hebrew-year (year)
;; Last month of Hebrew year.
(if (hebreu-leap-year year)

;; Then return
13

;; Else return
12) 1

The number of days in a Hebrew month is a more complex issue. The twelfth
month, Adar or Adar I, has 29 days in a common year and 30 days in a leap year,
but the numbers of days in the eighth month (Heshvan) and ninth month (Kislev)
depend on the overall length of the year, which in turn depends on factors discussed
below. Thus we write

(defun last-day-of -hebrew-month (month year)
;; Last day of month in Hebrew year.
(if (or (member month (l ist 2 4 6 10 13))

(and (= month 12) (not (hebreu-leap-year year)))
(and (= month 8) (not (long-heshvan year)))
(and (= month 9) (short-kislev year)))

;; Then return
29

;; Else return
30))

where the functions long-heshvan and short-kislev will be given later.
To present the remainder of the calculations for the Hebrew calendar, it is necessary

to describe how Hebrew intervals of time are reckoned. The day is divided into 24
hours and each hour is divided into 1080 parts; a day thus has 25920 parts. For our
purposes, it is easier to use just days and parts.

The beginning of the Hebrew new year is determined by the occurrence of the
new moon (mean conjunction) of the seventh month (Tishri), subject to possible
postponements of a day or two. The average length of a lunar period is taken to be
29 days, 12 hours, and 793 parts, that is, approximately 29.530594 days. The new
moon of Tishri, 1 A.M. (the first day of the f i s t year for the Hebrew calendar) is fixed
at Sunday night, 5 hours, 204 parts. Thus we calculate the time elapsed from sunset
of the preceding Saturday evening, until the new moon of Tishri for the Hebrew year
y by computing

(1 day, 5604 parts) +
(29 days, 13753 parts) x (number of months before year y).

The start of each new year, Rosh Hashanah (Tishri I), coincides with the calculated
day of the mean conjunction of Tishri, unless one of four delays is mandated:

CALENDRICAL CALCULATIONS 913

0 If the mean conjunction is a t midday or after, then the new year is delayed.*
Sunset is presumed to occur always at 6 p.m.t Since there are then 18 hours from
sunset until midday, postponement occurs if the conjunction is a t 18 x 1080 =
19440 parts or later into the day.

0 In no event must the new year be on Sunday, Wednesday, or Friday.: This
introduces an average ‘correction’ of about half a day in the calculated time of
appearance of the new moon of the month of Tishri.22

0 To keep the length of a year within the allowable ranges, in rare cases, an
additional delaying factor may need to be employed. If Rosh HaShanah were
on Tuesday and the conjunction of the following year were at midday or later,
then applying the previous two rules would result in delaying the following Rosh
HaShanah from Saturday (the day of the next conjunction for a common year)
until Monday. This would require an (unacceptable) year length of 356 days, so
instead the current Rosh HaShanah is delayed until Thursday.

0 Rosh HaShanah on Monday after a leap year can pose a similar problem, by
causing the year just ending to be too short. In this case, Rosh HaShanah is
delayed until Tuesday.

These rules are perhaps best described algorithmically:

(defun hebrew-calendar-elapsed-days (year)
;; Number of days elapsed from the Sunday prior to the start of the
; ; Hebrew calendar to the mean conjunction of Tishri of Hebrew yem.
(let*

((months-elapsed
(+
(* 235

(* 12

(quotient

;; Months in complete cycles so far.

;; Regular months in this cycle.

;; Leap months this cycle

(quotient (I- year) 19))

(mod (1- year) 19))

(I+ (* 7 (mod (1- year) 19)))
19) 1)

(parts-elapsed (+ 5604 (* 13753 months-elapsed)))
(day ;; Conjunction day

(parts (mod parts-elapsed 25920))
(+ 1 (* 29 months-elapsed) (quotient parts-elapsed 25920)))

; ; Conjunction parts

‘In 923 C.E. the calculated conjunction fell just after midday; this caused a short-lived (921-923
c.E.) dispute between Palestinian and Babylonian Jewish authorities about whether this rule should
be applied; some scant details can be found in vol. 4, col. 539-540 of the Encyclopedia Judaico.’6

‘That is, the moment of sunset is deemed 6 p.m. and sunrise is deemed 6 a.m., so that the ‘daylight
hours’ and ‘nighttime hours’ have Merent lengths that vary according to the seasons. (This is the
correct interpretation of chap. 6, par. 2 in Maimonides’ code?’)

*Excluding Wednesday and Friday prevents Yom Kippur (Tishri 10) from falling on Friday or
Sunday; excluding Sunday prevents Hoshand Rabba (Tishri 21) from falling on Saturday.

914 N. DERSHOWITZ AND E. M. REINGOLD

(alt ernat ive-day
(if (o r

(>= parts 19440) ;; If new moon is at or after midday,
(and

(= (mod day 7) 2) ; ; ... or is on a Tuesday ...
(>= parts 9924)
(not (hebrew-leap-year year))) ; ; of a common year,

(= (mod day 7) I);; ... or is on a Monday at...
(>= parts 16789) ;; 15 hours, 589 parts or later...
(hebrew-leap-year;; at the end of a leap year

;; at 9 hours, 204 parts or later...

(and

(1- year))))
;; Then postpone Rosh HaShanah one day
(I+ day)

;; Else
day) 1)

(if ;; If Rosh HaShanah would occur on Sunday, Wednesday,
;; or Friday
(member (mod alternative-day 7) (list 0 3 5))

(1+ alternative-day)
;; Then postpone it one (more) day and return

;; Else return
alternative-day)))

Although the calculations as given above are correct, they involve intermediate
values that can be far larger than 224 for current dates. To avoid this problem we can
modify the computation of the day and parts of the conjunction in the let* to read

(part s-elapsed
(+ 204

(* 793 (mod months-elapsed 1080))))
(hours -elapsed

(+ 5
(* 12 months-elapsed)
(* 793 (quotient months-elapsed 1080))
(quotient parts-elapsed 1080)))

(day ;; Conjunction day
(+ 1

(* 29 months-elapsed)
(quotient hours-elapsed 24)))

(+ (* 1080 (mod hours-elapsed 24))
(mod parts-elapsed 1080)))

(parts ; ; Conjunction parts

With this modification, only 24 bits are necessary for dates in the foreseeable future.

CALENDFUCAL CALCULATIONS 915

As mentioned above, the length of the year determines the length of the two varying
months, Heshvan and Kislev. Heshvan is long (30 days) if the year has 355 or 385
days; Kislev is short (29 days) if the year has 353 or 383 days. The length of the year,
in turn, is determined by the dates of the Hebrew new years (Tishri 1) preceding and
following the year in question:

(defun days-in-hebrew-year (year)
;; Number of days in Hebrew year.

(- (hebrew-calendar-elapsed-days (I+ year))
(hebrew-calendar-elapsed-days year)))

(defun long-heshvan (year)
;; True if Heshvan is long in Hebrew year.

(= (mod (days-in-hebrew-year year) 10) 5))

(defun short-kislev (year)
;; True if Kislev is short in Hebrew yeaT.

(= (mod (days-in-hebrew-year year) 10) 3))

With all the above machinery, we are now ready to convert to and from Hebrew
dates, in a manner similar to the previous calendars:

(defun absolute-from-hebrew (date)
;; Absolute date of Hebrew date.
(let* ((month (extract-month date))

(day (extract-day date))
(year (extract-year date)))

;; Return
(+ day ;; Days so far this month.

(if ;; before Tishri
(< month 7)

;; Then add days in prior months this year before and
;; after Nisan.

(+ (sum (last-day-of-hebrew-month m year)

(sum (last-day-of-hebrew-month m year)
m 7 (<= m (last-month-of-hebrew-year year)))

m I (< m month)))
;; Else add days in prior months this year

(sum (last-day-of-hebrew-month m year) m 7 (< m month)))
(hebrew-calendar-elapsed-days year);; Days in prior years.
-1373429))) ; ; Days elapsed before absolute date I.

(defun hebrew-from-absolute (date)
;; Hebrew (month day year) corresponding to absolute date.
(let* ((approx ;; Approximation from below.

(quotient (+ date 1373429) 366))
(year ;; Search forward from the approximation.

916 N. DERSHOWITZ AND E. M. REINGOLD

(+ approx (sum i y approx
(>= date

(absolute-from-hebrew
(list 7 i (it y)))))))

(start
(if (C date (absolute-from-hebrea (list 1 1 year)))

;; Then start at Tishri

;; Else start at Bisan

;; Starting month for search for month.

7

1) 1
(month ;; Search forward from either Tishri or Nisan.
(t start

(sum 1 m start
(> date

(absolute-from-hebrew
(list m

(last-day-of-hebrew-month m year)
year))))))

(day ;; Calculate the day by subtraction.
(- date (I- (absolute-from-hebreu (list month I year))))))

(list month day year)))
;; Return

The function hebreu-calendar-elapsed-days is called repeatedly during the calcu-
lations, often several times for the same year. More efficient code would avoid such
repetition.

HOLIDAYS
The various calendars are needed to compute the dates of civil and religious holidays.
In most of this section, we will take the ethnocentric view that our task is to compute
the absolute dates of holidays that occur in a given Gregorian year; there is clearly
little difficulty in finding the dates of, say, Islamic holidays in a given Islamic year!

Secular Holidays

Secular holidays on the Gregorian calendar are either on fixed days or on a particular
day of the week relative to the beginning or end of a month. (A n extensive list of
secular holidays can be found in Gregory's Special Days.*') Fixed holidays are trivial
to deal with; for example, to determine the absolute date of American Independence
Day in a given Gregorian year we would use

(defun independence-day (year)
;; Absolute date of American Independence Day in Gregorian year.
(absolute-from-gregorian (list 7 4 year)))

Other holidays are on the nth occurrence of a given day of the week, counting from
either the beginning or the end of the month. American Labor Day, for example, is the

CALENDRICAL CALCULATIONS 917

first Monday in September, while American Memorial Day is the last Monday in May.
We handle such specifications by writing a function that determines the absolute date
of the nth kth day in a given month in a given Gregorian year, counting backward
from the end of the month when n < 0.

(defun Nth-Kday (n k month year)
;; Absolute date of the nth kday in Gregorian month, year.
;; If nC0, the nth kday from the end of month is returned
;; (that is, -1 is the last kday, -2 is the penultimate kday,
; ; and so on).
(if (> n 0)

;; Then return

k = 0 means Sunday, k = 1 means Monday, and so on.

(+ (Kday-on-or-before ;; First kday in month.
(absolute-from-gregorian
(list month 7 year)) k)

(* 7 (1- n))) ; ; Advance n - 1 kdays.

;; Last kday in month.
;; Else return

(+ (Kday-on-or-before

(list month

year) 1

(absolute-from-gregorian

(last-day-of-gregorian-month month year)

k)
(* 7 (I+ n))))) ; ; Go back -n - 1 &days.

With this function, we can define holiday dates, such as

(defun labor-day (year)
;; Absolute date of American Labor Day in Gregorian year.
(Nth-Kday I I 9 year));; First Monday in September.

(defun memorial-day (year)
;; Absolute date of American Memorial Day in Gregorian year.
(Nth-Kday -1 I 5 year));; Last Monday in May.

or determine the starting and ending dates of American daylight savings time:

(defun daylight-savings-start (year)
;; Absolute date of the start of American daylight savings time
; ; in Gregorian year.
(Nth-Kday I 0 4 year));; First Sunday in April.

(defun daylight-savings-end (year)
;; Absolute date of the end of American daylight savings time
; ; in Gregorian year.
(Nth-Kday -1 0 10 year));; Last Sunday in October.

918 N. DERSHOWITZ AND E. M. REINGOLD

Christian Holidays

The main Christian holidays are Christmas, Easter, and various days connected
with them (Advent, Ash Wednesday, Good Friday, and others; see vol. V, pp. 844-
853 of the Encyclopedia of Religion and Ethics.') In addition to the complicated
calculations necessary to determine the date of Easter, there are complications that
result from the Eastern Orthodox practice of celebrating Christmas according to the
Julian calendar.

The date of Christmas on the Gregorian calendar is fixed and presents no problem:

(defun Christmas (year)
;; Absolute date of Christmas in Gregorian yeaT.
(absolute-from-gregorian (list 12 25 year)))

The related dates of Advent (Sunday closest to November 30; this is equivalent to the
Sunday on or before December 3) and Epiphany (twelve days after Christmas) are
computed by

(defun advent (year)
;; Absolute date of Advent in Gregorian year.
(Kday-on-or-before (absolute-f rom-gregorian (list 12 3 year)) 0))

(defun epiphany (year)
;; Absolute date of Epiphany in Gregorian year.

(t 12 (Christmas year)))

The date of Assumption (August 15), celebrated in Catholic and Eastern Orthodox
countries, is fixed, and presents no problem.

The date of Eastern Orthodox Christmas occurring in a given Gregorian year is
more involved. Since the Julian year is always at least as long as the corresponding
Gregorian year, Eastern Orthodox Christmas c a occur at most once in a given Gre-
gorian year, but it can occur either at the beginning or the end; in some years (like
1100 c.E.) it does not occur at all.

(defun eastern-orthodox-Christmas (year)
;; List of zero or one absolute dates of Eastern Orthodox
; ; Christmas in Gregorian y e w .
(let* ((janl (absolute-from-gregorian (list 1 I year)))

(dec31 (absolute-from-gregorian (list 12 31 year)))
(y (extract-year (julian-from-absolute janl)))
(cl (absolute-from-julian (list 12 25 y)))
(c2 (absolute-from-julian (list 12 25 (it y)))))

(append
(if ;; ci occurs in current year

.. ,, Then that date; otherwise, none

(if ;; c2 occurs in current year

(<= janl cl dec31)

(list cl) nil)

CALENDRICAL CALCULATIONS 919

(<= jani c2 dec31)

(list c2) nil))))
.. , , Then that date; otherwise, none

The function append concatenates its arguments into one list.
The calculation of the date of Easter has a fascinating history.”* l2 Algorithms

and computer programs abound6* 6* 28-32 (the discussion of the mathematical aspects
of the calculation in O’Beirne’s Puzzles and Purudozegl is especially nice), but we
include Lisp functions here for completeness and because our absolute-date approach
allows considerable simplification of ‘classical’ algorithms.

The date of Easter was fixed in 325 C.E. by the Council of Nicaea to be the first Sun-
day after the first full moon occurring on or after the vernal equinox. This definition
seems precise, but in reality accurate determination of the full moon and the vernal
equinox is quite complex and simpler approximations are used in practice; as Kepler
declared,12 ‘Easter is a feast, not a planet’. The date of Easter is thus based on the
presumption that the vernal equinox is always March 21 and on approximations to
the lunar phases called epacts.

Before the Gregorian reform of the Julian calendar the approximations were fairly
crude. Assuming the Metonic cycle were accurate would mean that the phase of
the moon on January 1 would be the same every 19 years. Hence, the epact can
be approximated by multiplying the number of years since the start of the current
Metonic cycle (called the ‘golden number’) by the eleven-day difference between a
common year of 365 days and 12 lunar months of 29.5 days and adjusting by the epact
of January 1,1 c . E . - ~ this done modulo 30. F’rom the epact one can calculate the
phase of the moon (in days) on April 5 (ignoring February 29) and go back that many
days from April 19, giving a date between March 21 and April 19 (inclusive) for the
(ecclesiastical) ‘Paschal full moon’. Thus the equivalent of the following calculation
was used to determine Easter from 325 C.E. until the adoption of the Gregorian
~alendar:~j 6* 29

(defun nicaean-rule-easter (year)
;; Absolute date of Easter in Julian yea?, according to the rule
;; of the Council of Nicaea.
(let* ((shifted-epact ;; Age of moon for April 5.

(mod (+ 14
(* 11 (mod year 19)))

30))
(paschal-moon ;; Day after full moon on or after March 21.
(- (absolute-f rom-julian (list 4 19 year))

shifted-epact)))
; ; Return the Sunday following the Paschal moon

(Kday-on-or-before (+ paschal-moon 7) 0)))

The Gregorian reform included, for the calculation of Easter, a far more accurate
approximation to the lunar phases due to Clavius. Three corrections are employed:

920 N. DERSHOWITZ AND E. M. REINGOLD

0 The Gregorian change in the calendar (three out of four century years are com-
mon years) is taken into account in the calculation of epacts.

0 About every 222 years, a one-day correction is made to compensate for the
inaccuracy of the Metonic cycle.

0 There are approximately 29.5 days between successive new moons, while the
lunar month in which Easter occurs is always taken to have 29 days, so an
additional adjustment to the epact (which can take on 30 values) is sometimes
needed.*

This is the method now used:5* 6 i 30

(defun easter (year)
;; Absolute date of Easter in Gregorian year.
(let* ((century (I+ (quotient year 100)))

(shif ted-epact

(+ 14 (* 11 (mod year 19)) ; ;

;; Age of moon for April 5...
(mod . . .by Nicaean rule

(- ;; ... corrected for the Gregorian century rule
(quotient;; ... corrected for Metonic cycle inaccuracy.
(* 30 century));;

(quotient (* 3 century) 4))

(+ 5 (* 8 century)) 25)
Keeps value positive.

30))
(adjust ed-epact ,, .. Adjust for 29.5 day month.
(if (or (= ehifted-epact 0)

(and (= shifted-epact I) (< I 0 (mod year 19))))
;; Then

;; Else
(I+ shift ed-epact)

shifted-epact))
(paschal-moon;; Day after full moon on or after March 21.
(- (absolute-from-gregorian (list 4 19 year))

adjusted-epact)))
;; Return the Sunday following the Paschalmoon.

(Kday-on-or-before (+ paschal-moon 7) 0)))

Many Christian holidays depend on the date of Easter: Septuagesima Sunday (63
days before), Sexagesima Sunday (56 days before), Shrove Sunday (49 days before),
Shrove Monday (48 days before), Shrove Tuesday (47 days before), Ash Wednes-
day (46 days before), Passion Sunday (14 days before), Palm Sunday (seven days
before), Maundy Thursday (three days before), Good Friday (two days before), Ro-
gation Sunday (35 days after), Ascension Day (39 days after), Pentecost (also called

‘The details of this adjustment were designed by Clavius to keep Easter within the same range of
dates as in the Julian calendar, March 22 through April 25.”

CALENDFUCAL CALCULATIONS 92 1

Whitsunday-49 days after), Whitmundy (50 days after), Trinity Sunday (56 days
after), and Corpus Christi (60 days after). All these are easily computed; for example

(defun Pentecost (year)
;; Absolute date of Pentecost in Gregorian year.

(+ 49 (easter year)))

Islamic Holidays

Determining the absolute dates of Islamic holidays occurring in a given Gregorian
year is complicated because an Islamic year is always shorter than the Gregorian year,
so each Gregorian year contains parts of a t least two and sometimes three successive
Islamic years. Hence any given Islamic date occurs at least once and possibly twice
in any given Gregorian year. For example, Islamic New Year (Muharram 1) occurred
twice in 1943: on January 8 and again on December 28. Accordingly, we will approach
the problem of the Islamic holidays by writing a general function to return a list of
the absolute dates of a given Islamic date occurring in a given Gregorian year:

(defun islamic-date (month day year)
;; List of the absolute dates of Islamic month, day
;; that occur in Gregorian year.
(let* ((janl (absolute-from-gregorian (list I I year)))

(dec31 (absolute-from-gregorian (list 12 31 year)))
(y (extract-year (islamic-from-absolute jani)))

(datei (absolute-from-ialamic (list month day y) 1)
(date2 (absolute-from-islamic (list month day (I+ y))))
(date3 (absolute-from-islamic (list month day (+ 2 y)))))

;; The possible occurrences in one year are

;; Combine in one list those that occur in current year
(append
(if (C= jani datei dec3i)

(list datei) nil)
(if (<= jani date2 dec31)

(list date21 n i l)
(if (<= jani date3 dec31)

(list date3) nil))))

There is little uniformity among the Islamic sects and countries as to holidays. In
general, the principal holidays of the Islamic year are Islamic New Year (Muharram
l), Ashura (Muharram lo), Mulad-al-Nabi (Rabi I 12), Shab-e-Mi’raj (Rajab 26),
Shab-e-Bara’t (Sha’ban 15), Ramadan (Ramadan l), Shab-e Qadr (Ramadan 27),
Id-al-Fitr (Shawwal l), and Id-al-Adha (Dhu-al-Hijjah lo).* Like all Islamic days,
an Islamic holiday begins a t sunset the prior evening. We can determine a list of

‘Other days, too, have religious significance, for example, the entire month of Ramadan.

922 N. DERSHOWITZ AND E. M. REINGOLD

the corresponding absolute dates of occurrence in a given Gregorian year by using
islamic-date above, as in

(defun mulad-al-nabi (year)
;; List of absolute dates of Mulad-al-Nabi occurring in
; ; Gregorian year.
(iBlamic-date 3 12 year))

Islamic holidays begin at sunset on the prior evening. It bears reiterating that the
determination of the Islamic holidays cannot be fully accurate since the precise day
of their occurrence is dependent on proclamation by religious authorities.

Jewish Holidays

As throughout this section, we consider our problem to be the determination of the
Jewish holidays that occur in a specified Gregorian year. Since the Hebrew year is, on
the average, consistently aligned with the Gregorian year, each Jewish holiday occurs
just once in a given Gregorian year (with a minor exception noted below). The major
holidays of the Hebrew year occur on fixed days on the Hebrew calendar, but occur
only in fixed seasons on the Gregorian calendar.7* 24 They are easy to determine on
the Gregorian calendar with the machinery developed above, provided we observe
that the Hebrew year that began in the fall of 1 C.E. (Gregorian) was 3762 A.M., so
we have the relation

y + 3761 = Hebrew new year occurring in the fall of Gregorian year y.

This means that holidays occurring in the fall and early winter of the Gregorian year
y occur in the Hebrew year y + 3761, while holidays in the late winter, spring, and
summer occur in Hebrew year y + 3760. For example, to find the absolute date of
Yom Kippur (Tishri 10) in a Gregorian year, we would use

(defun yom-kippur (year)
;; Absolute date of Yom Kippur occurring in Gregorian year.
(absolute-from-hebrew (list 7 10 (+ year 3761))))

The absolute dates of Rosh HaShanah (Tishri l), Sukkot (Tishri 15), Hoshanah Rabba
(Tishri 21), Shemini Azereth (Tishri 22), and S i d a t Torah (Tishri 23, outside Israel)
are identically determined. (See p. 800 of Winning Ways, Volume 2: Games in
PurticzLZa72* for another way to determine the date of Rosh HaShanah.) As on the
Islamic calendar, all Hebrew holidays begin a t sunset the prior evening.

The dates of the other major holidays, Passover (Nisan 15), ending of Passover
(Nisan 21), and Shavuot (Sivan S), are determined similarly, but since these holidays
occur in the spring, the year corresponding to Gregorian year y is y + 3760.* Thus,
for example, we determine the absolute date of Passover by

'Conservative and Orthodox Jews observe two days Rosh HaShanah-Tishri 1 and 2. Outside
Israel, they also observe Tishri 16, Nisan 16, Nisan 22, and Sivan 7 as holidays.

CALENDFUCAL CALCULATIONS 923

(defun passover (year)
;; Absolute date of Passover occurring in Gregorian y e a r .
(absolute-from-hebrew (list I I S (+ year 3760))))

(Gauss developed an interesting formula to determine the Gregorian date of Passover
in a given year.20)

The minor holidays of the Hebrew year are the ‘intermediate’ days of Sukkot (Tishri
16-21) and Passover (Nisan 16-20), Hanukkah (eight days, beginning on Kislev 25),
Tu-B’Shevat (Shevat 15), and Purim (Adar 14 in normal years, Adar II 14 in leap
years). Hanukkah occurs in late fall/early winter, so Hanukkah of Gregorian year y
occurs in the Hebrew year y + 3761, while Tu-B’Shevat occurs in late winter/early
spring and hence Tu-B’Shevat of Gregorian year y occurs in Hebrew year y+3760; thus
these two holidays are handled as were Rosh HaShanah and Passover, respectively.
Purim always occurs in late winter or early spring, so its absolute date is computed
by

(defun purim (year)
;; Absolute date of Purim occurring in Gregorian y e a r .
(absolute-from-hebrew
(list
(last-month-of-hebrew-year (+ year 3760));; Adar or Adar I1
14
(+ year 3760))))

The Hebrew year contains several fast days that, though specified by particular
Hebrew calendar dates, are shifted when those days occur on Saturday. The fast days
are Tzom Gedaliah (Tishri 3), Tzom Teveth (Teveth lo), Ta’anit Esther (the day
before Purim), Tzom Tammu (Tammuz 17), and Tisha B’Av (Av 9). When Purim
is on Sunday, Ta’anith Esther occurs on the preceding Thursday, so we can write

(defun ta-anit-esther (year)
;; Absolute date of Purim occurring in Gregorian yea?.
(let* ((Purim-date (purim year)))
(if ;; Purim is on Sunday

(= (mod purim-date 7) 0)
;; Then return prior Thursday

(- purim-date 3)
;; Else return previous day
(I- purim-date))))

Each of the other fast days, as well as Shushan Purim (the day after Purim, celebrated
in Jerusalem), is postponed to the following day (Sunday) when it occurs on Saturday.
Since Tzom Gedaliah is always in the fall, while Tzom Tammuz and Tisha B’Av axe
always in the summer, their determination is easy. For example,

924 N. DERSHOWITZ AND E. M. REINGOLD

(defun tisha-b-av (year)
;; Absolute date of Tisha B’Av occurring in Gregorian yea?.
(let* ((ninth-of-av

(absolute-from-hebreu (list 5 9 (+ year 3760)))))
(if ;; Ninth of Av is Saturday

(= (mod ninth-of-av 7) 6)

(I+ ninth-of -av)
;; Then return the next day

;; Else return
ninth-of-av)))

Tzom Teveth, which can never occur on Saturday, should be handled Like Islamic
holidays because Teveth 10 can fall on either side of January 1, so a single Gregorian
calendar year can have zero, one, or two occurrences of Tzom Teveth. For example,
Tzom Teveth occurred twice in 1982, but not at all in 1984. We leave it to the reader
to work out the details.
On the Hebrew calendar, the first day of each month except Tishri is called Rosh

Hodesh and has minor ritual significance. When the preceding month has 30 days,
Rosh Hodesh includes also the last day of the preceding month. The determination
of these days is elementary. Some other dates of significance depend on the Julian
approximation of the tropical year in which each of the four seasons is taken to be
91.3125 days long.’

Finally, the Hebrew calendar contains what we might term ‘personal’ days: One’s
birthday according to the Hebrew calendar determines the day of one’s But (for girls)
or BUT (for boys) Mitzvah (the twelfth or thirteenth birthday). Dates of death de-
termine when Kaddish is recited (yuhTzeits) for parents (and sometimes for other
relatives). These are ordinarily just anniversary dates, but the leap year structure
and the varying number of days in some months require that alternative days be used
in certain years, just as someone born February 29 on the Gregorian calendar has to
substitute an alternate day in common years.

The particular alternatives are best described algorithmically; since the problem
here is the determination of a date in a given Hebrew year, we write the functions in
that way:+

(defun hebrew-birthday (birthdate year)
;; Absolute date of the anniversary of Hebrew birthdate
; ; occurring in Hebrew yea?.
(let* ((birth-day (extract-day birthdate))

(birth-month (extract-month birthdate)

*By one traditional Hebrew reckoning, the vernal equinox of year 5685 A.M. was at 6 p.m. Wednes-
day evening, March 26, 1925 C.E. (Julian). It recurs on that day of the Julian calendar and at that
hour of the week every 28 years (barkhat hahoma). The beginning of ah’ela (request for rain) outside
Israel in Julian year y (meant to correspond to 60 days after the autumnal equinox) is absolute day
(- (absolute-from-julian (list 3 26 (1+ y))) 124). See Spier’s The Comprehensive Hebrew
Calendar.“

‘There are minor variations in custom regarding the date of yahrzeit in some of these cases, but
they need not concern us here.

CALENDRICAL CALCULATIONS 925

(birth-year (extract-year birthdate))
(if ;; It’s Adar in a normal year or Adar I1 in a leap year,

(= birth-month (last-month-of-hebrea-year birth-year))

(absolute-from-hebreu
;; Then use the same day in last month of year.

(list (last-month-of-hebrea-year year) birth-day year))
;; Else use the normal anniversary of the birth date,
;; or the corresponding day in years without that date

(absolute-from-hebrea (list birth-month birth-day year)))))

This code takes advantage of the fact that absolute-from-hebrea works for dates
(month i year) and always returns the absolute date of the (i - 1)st day after (month
1 year) , even if the month has fewer than i days.

(defun yahrzeit (death-date year)
;; Absolute date of the anniversary of Hebrew death-date
;; occurring in Hebrew yea?.
(let* ((death-day (extract-day death-date))

(death-month (extract-month death-date))
(death-year (extract-year death-date)))

(cond
;; If it’s Beshvan 30 it depends on the first anniversary; if
;; that was not Heshvan 30, use the day before Kislev 1 .
((and (= death-month 8)

(= death-day 30)
(not (long-heshvan (I+ death-year))))

(I- (absolute-from-hebreu (list 9 I year))))
;; If it’s Kislev 30 it depends on the first anniversary; if
;; that was not Kislev 30, use the day before Teveth I.
((and (= death-month 9)

(= death-day 30)
(short-kislev (I+ death-year)))

(I- (absolute-from-hebreu (list 10 1 year))))
;; If it’s Adar 11, use the same day in last month of
;; year (Adar or Adar 11).
((= death-month 13)
(absolute-from-hebrea
(list (last-month-of-hebrea-year year) death-day year)))

;; If it’s the 30th in Adar I and yeaz is not a leap year
;; (so Adar has only 29 days), use the last day in Shevat.
((and (= death-day 30)

(= death-month 12)
(not (hebrew-leap-year death-year)))

(absolute-from-hebrea (list 11 30 year)))
;; In all other cases, use the normal anniversary of the
; ; date of death.
(t (absolute-from-hebrea

(list death-month death-day year) 1)

926 N. DERSHOWITZ AND E. M. REINGOLD

The cond statement Lists a sequence of tests and values, like a generalized case state-
ment.

OTHER CALENDARS

In this section, we briefly describe two calendars for which we would have Liked to
provide algorithms .

Hindu Calendars

The Hindu calendar is a luni-solar calendar based on approximations to the true
astronomical day, synodic month, and sidereal year, rather than to their mean values,
as is the case for the calendars considered in previous sections. There are three
main variations in use in India; the one based on the S.iirya-Siddhiinta (circa 1000
c.E.) uses a value of 365.258756481481 -.- days for the length of the sidereal year.
Days of a month are numbered according to the computed phase of the moon at
sunrise (in a particular location). Months are named according to the position of
the sun in the zodiac at the computed time of new (or, in some variations, full)
moon (itself a function of the sun’s position). Since the true solar and lunar motions
across the celestial sphere vary in speed, this method of reckoning leads occasionally
to consecutive days bearing the same ordinal number, to skipped numbers, and,
similarly, to repeated and lost 34

The necessary computational mechanisms for handling the Hindu calendars are far
too complex for inclusion in this paper.35 Indeed, as van Wijk ‘The rules
the Siirya-Siddhata gives for calculating the time of true sunrise are exceedingly
complicated, and inapplicable in practice.’

The Chinese Calendar

The Chinese year consists of twelve lunar months in a common year and thirteen
lunar months in a leap year. Chinese New Year occurs at the beginning of the lunar
month during which the sun’s tropical longitude is 330 degrees.36

The Chinese calendar is similar to the Hindu in its use of true values for solar and
lunar events. Unlibe the Hindu calendars, the Chinese calendar makers use modern
astronomy to decide close calls (whether the sun and moon at the point of true
conjunction are in one constellation or in another). The formulae of the ephemerisg
can be used for this purpose, but require floating point arithmetic, and are not valid
over extended periods of time. For these reasons, we have not included Lisp functions
for the Chinese calendar or the determination of Chinese New Year in this paper.

ACKNOWLEDGEMENTS

We t h d Yaacov Choueka, Douglas Comer, Supyan Hussin, Mitch Medow, Lester
Penner, and Daniel Schindler for their comments.

CALENDFUCAL CALCULATIONS 927

REFERENCES
Note: Only English lmguage references are included in the following list. Some of
these are relatively inaccessible.
1.

2.
3.
4.

5.

6.

7.

8.

9.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

R. M. Stallman, GNU Emacs Manual, 6th ed., Free Software Foundation, Cambridge,
MA, 1986.
G. L. Steele, Jr., COMMON LISP: The Language, Digital Press, Boston, MA, 1984.
F. Parise, The Book of Calendars, Facts on File, New York, 1982.
V. V. Tsybulsky, Calendars of Middle East Countries, Institute of Oriental Studies,
USSR Academy of Sciences, Moscow, 1979.
W. S. B. Woolhouse, Measures, Weights, E4 Moneys of All Nations: And an Analysis of
the Christian, Hebrew, and Mahometan Calendars, 6th ed., Crosby Lockwood, London,
1881.
W. S. B. Woolhouse, ‘Calendar’, The Encyclopadia Britannica, 11th ed., vol. 4, pp.
987-1004, The Encyclopaedia Britannica Co., New York, 1910. The same article also
appears in the eighth through tenth editions.
J. Hastings, ed., Encyclopcedia of Religion and Ethics, Charles Scribner’s Sons, New
York, 191 1.
L. Lamport, ‘On the proof of correctness of a calendar program’, Comm. ACM, 22,

Ezplanatory Supplement to the Astronomical Ephemeris and the American Ephemeris
and Nautical Almanac, Her Majesty’s Stationery Office, London, 1961.
G. V. Coyne, M. A. Hoskin and 0. Pedersen, Gregorian Reform of the Calendar: Pro-
ceedings of the Vatican Conference to Commemorate Its 400th Anniversary, 1582-1982,
Pontifica Academka Scientiarum, Specola Vaticana, Vatican, 1983.
J. Dutka, ‘On the Gregorian revision of the Julian calendar’, Math. Intelligencer, 10,

554-556 (1979).

56-64 (198!&.
G. Moyer,
V. F. Rickey, ‘Mathematics of the Gregorian calendar’, Math. Intelligencer, 7, 53-56
(19851.

e Gregorian calendar’, Sci. Amer., 246, (5), 144-152 (May 1982).

5 M.’Reingold, J. Nievergelt and N. Deo, Combinatorial Algorithms: Theory and Prac-
tice, Prentice-Hall, Englewood Cliffs, N J , 1977.
Data Elements and Interchange Formats-Information Interchange-Representation of
Dates, I S 0 8601, International Organization for Standardization, 1988. This standard
replaced I S 0 2015, the original document describing the I S 0 calendar.
S. B. Burnaby, Elements of the Jewish and Muhammadan Calendars, George Bell and -
Sons, London, 1901.
G. S. P. Freeman-Grenville, The Muslim and Christian Calendars, 2nd ed.. Rex Collinns.

V I

London, 1977.
N. Bushwick, Understanding the Jewish Calendar, Moznaim Publishing Corp., New York,
1989.
W. M. Feldman, Rabbinical Mathematics and Astronomy, M. L. Cailingold, London,
1931; 3rd corrected ed., Sepher-Hermon, New York, 1978.
M. Friedkinder, ‘Calendar’, The Jewish Encyclopedia, Funk and Wagnalls, New York,

L. Levi, Jewish Chronomony: The Calendar and Tames of Day in Jewish Law, Gur Aryeh
Institute for Advanced Jewish Scholarship, Brooklyn, NY, 1967.
Maimonides (= Moshe ben Maimon), Mishneh Torah: Sefer Zemanim-Hilhot Kiddush
HaIjodesh, 1177. Translated by S. Gandz (with commentary by J . Obermann and 0.
Neugebauer), as Code of Maimonides, Book Three, Beatise Eight, Sanctification of the
New Moon, Yale Judaica Series, vol. XI, Yale University Press, New Haven, CT, 1956.
Addenda and corrigenda by E. J. Wiesenberg appear at the end of Code of Maimonides,
Book Three, The Book of Seasons, translated by S . Gandz and H. Klein, Yale Judaica
Series, vol. XIV, Yale University Press, New Haven, CT, 1961.
L. A. Resnikoff, ‘Jewish calendar calculations’, Scripta Math., 9, 191-195, 274-277
(1943).

1906, pp. 501-508.

928 N. DERSHOWITZ AND E. M. REINGOLD

24.

25.

26.
27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

A. Spier, The Comprehensive Hebrew Calendar, 3rd ed., Feldheim Publishers, New York,
1986.
E. J. Wiesenberg, ‘Calendar’, Encyclopadia Judaica, vol. 5, col. 43-50, Macmillan, New
York, 1971.
C. Roth, ed., Encyclopadia Judaica, Macmillan, New York, 1971.
R. W. Gregory, Special Days, Citadel, Secaucus, NJ, 1975. Previous editions appeared
under the title, Anniversaries and Holidays.
E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways: Volume 2, Games in
Particular, Academic Press, New York, 1982.
D. E. Knuth, ‘The calculation of Easter’, Comm. ACM, 5, 209-210 (1962).
D. E. Knuth, The Art of Computer Progromming, Volume I: Fundamental Algorithms,
2nd ed., Addison-Wesley, Reading, MA, 1973.
T. H. O’Beirne, Puzzles and Pamdozes, Oxford University Press, London, 1965.
Reprinted by Dover Publications, New York, 1984.
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, New York,
1939.
V. B. Ketkar, ‘Indian and foreign chronology: with theory, practice and tables, B.C. 3102
to 2100 A.D. and notices of the Vedic, the ancient Indian, the Chinese, the Jewish, the
ecclesiastical and the Coptic calendars’, J. Royal Asiatic Soc., Bombay Branch, XXVI, a . E. van Wijk, Decimal Tables for the Reduction of Hindu Dates from the Data of the
Stirya-Siddhanta, Martinus Nijhoff, The Hague, 1938.
W. E. van Wijk, ‘On Hindu chronology V: Decimal tables for calculating true local time,
according to the Siirya-Siddhsnta’, Acta Orientalia, V, 1-27 (1926).
E. Fritsche, On Chronology and the Construction of the Calendar with Special Regard
to the Chinese Computation of Time Compared with the European, R. Laverentz, St.
Petersburg, 1886.

LXXV-A, Eztra Number), 1923.

