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SUMMARY 
Algorithmic presentations are given for three calendars of historical interest, the Mayan, 
F'rench Revolutionary, and Old Hindu. 
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From a chronological point of view the substitution for the mean 
calendaric system of one based on the true movements of the sun 

and moon, was anything but an improvement, as it destabilized 
the foundations of the time reckoning. Indeed, the system may 

have had the charm of adapting dai ly  life as nearly as the 
astronomical knowledge permitted to the movement of the 

heavenly bodies, but on the other hand it broke ties with history, 
as there was no unity either of elements or systems. The very 

complexity of the system is a proof of its primitiveness. 

-W. E. van Wijk (1938) 

INTRODUCTION 

In an earlier paper,' the first two authors gave algorithmic descriptions of five cal- 
endars in widespread use, namely the Gregorian (New Style), Julian (Old Style), 
Islamic (Moslem), Hebrew (Jewish), and IS0  (International Organization for Stan- 
dardization) calendars. (For an ancient comparison of the Islamic, Hebrew, and 
Julian calendars, see al-Biruni's classic treatise.2) In this paper, we treat similarly 
three calendars of historical interest: the Mayan, French Revolutionary (Ze culendrier 
rLpublicuin), and Old Hindu calendars. We follow the same conventions as in our 

003&0644/93/040383-22$16.00 
@ 1993 by John Wiley & Sons, Ltd. 

Received 6 April 1992 
Revised 26 October 1992 



384 E. M. REINGOLD, N. DERSHOWITZ AND S. M. CLAMEN 

earlier paper, presenting all algorithms in the form of COMMON  LISP^ functions.* A 
brief explanation of Lisp, and why we chose it as a vehicle, was given in our earlier 
paper. As in that paper, we have chosen not to  optimize the code at the expense of 
algorithmic clarity; consequently, improvements are possible in economy and in more 
appropriate use of Lisp functions. 

Aside from their obvious historical value, the three calendars presented here are 
of interest in that they introduce algorithmic issues not present in the calendars of 
our previous paper. These new issues are applicable to a wide range of ancient and 
current calendars. There is also, certainly, an element of whimsy in our selection of 
ethnically, geographically, and chronologically diverse systems of chrononomy. 

As described in our earlier paper, we have chosen Monday, January 1, 1 c . E . ~  
(Gregorian) as our absolute day 1 and count forward day-by-day from there, taking 
the passage of time as a sequence of days numbered 1, 2, 3, ... that the various 
human-oriented calendars label differently. For example, absolute day 710,347 is 
called November 12, 1945 C.E. on the Gregorian calendar. All that is required for 
calendrical conversion is the ability to convert to and from this absolute calendar. 

Our earlier paper gave Lisp functions to  do the conversions for the Gregorian, ISO, 
Julian, Islamic, and Hebrew calendars. For example, to convert an absolute date to a 
Gregorian date we sequentially determine the year, month, and day of the month-the 
year is first closely approximated from below and then found precisely by stepping 
through subsequent years (that is, by a linear search).# The month is then found 
by a similar linear process, and the day of the month is determined by subtraction. 
The linear searches use a macro (from our previous paper) to compute sums. The 
expression 

'To insure correctness, all code in this paper was typeset directly from working Lisp functions. We 
will gladly provide these Lisp functions in electronic form: send an empty electronic mail message to 
reingoldecs .uiuc . edu with the subject line containing precisely the phrase 'send-cal'; your message 
will be answered automatically with the combined code from this paper and our earlier one. 

'Common era; or, A.D. 
'In our previous paper we noted that the exact determination of the Gregorian year from the 

absolute date  can be viewed as an  exercise in base conversion in a mixed-radix system, but (as 
pointed out to us  by Jamshid Afshar), we gave an erroneous description of the conversion. Here is 
the correct description: 

do = date  - 1 
12400 = do div 146097 
dl  = do mod 146097 
n loo  = dl div 36524 
d2 = dl mod 36524 
124 = dz  div 1461 
d3 = d2 mod 1461 
nl = d3 div 365 
dr = d3 mod 365 

{prior days} 
{number of completed 400 year cycles} 
{prior days not included in n400}  

{number of 100 year cycles not included in n400) 
{prior days not included in 9x400 or n l o o }  

I prior days not included in n400, n l o o ,  or n4) 
{number of years not included in n400, m o o ,  or n 4 )  

{prior days not included in n400, n100, n4, or nl } 

number of 4 year cycles not included in n400 or n100) 

if (n100 = 4) or (121 = 4) then 

else 
date  is ordinal day 366 in Gregorian year 40012400 + l O O n 1 o o  + 4n4 + n1 

date  is ordinal day dr + 1 in Gregorian year 400n400 + 1 O O n l o o  + 4n4 + nl + 1. 
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(sum f i k p) 

computes Ci>k,p(i) f ( i ) ;  that is, the expression f(i) is summed for all i = k, k 4- 1, 
. . . , continuing only as long as the condition p ( i )  holds. The COMMON LISP definition 
of sum is 

(defmacro sum (expression index i n i t i a l  condition) 
; ; Sum expression for  index = initial and successive integers,  
; ; as long as condition holds. 

( l e t *  ((temp (gensym))) 
‘(do ((,temp 0 (+ ,temp ,expression)) 

((not ,condition) ,temp)))) 
(,index , i n i t i a l  (l+ , index))) 

In this paper we give functions for the Mayan, French Revolutionary, and Old Hindu 
calendars. Together with the functions in our previous paper, these functions enable 
conversion back and forth between any of the eight calendars. As in our earlier paper, 
the algorithms given in this paper do not generally work for non-positive absolute 
dates. 

To simplify matters in our earlier paper, we altogether avoided dealing with dates 
before the common era. For example, our Lisp functions for the Hebrew calendar 
included the constant 1,373,429 as the number of days on the Hebrew calendar before 
our absolute date 0. This circumlocution avoided a statement such as ‘the epoch of the 
Hebrew calendar is Saturday, September 5, -3760 (Gregorian)’. In the present paper, 
however, we deal with two calendars for which the scholarly literature is replete with 
such statements; thus, to aid the reader interested enough to pursue matters through 
further reading, we now explain how years before the common era are conventionally 
handled. This convention is often a source of confusion. 

It is computationally convenient, and mathematically sensible, to label years with 
the sequence of integers . . . , -3, -2, - l , O ,  1 ,2 ,3 , .  . . so that year 0 precedes year 1; 
we do this when extrapolating backward on the Gregorian calendar and the same 
leap-year rule applies based on divisibility by 4, 100, and 400. However, on the Julian 
calendar it is customary to refer to  the year preceding 1 C.E. as 1 B.c.E.; counting 
it as a leap year in accordance with the every-fourth-year leap-year rule of the Julian 
calendar. Thus the epoch of the Hebrew calendar can alternatively be referred to as 
Saturday, October 5, 3761 B.C.E.  (Julian). To highlight this asymmetry, in this paper 
we will append ‘B.c.E.’ only to Julian calendar years, reserving the minus sign for 
Gregorian calendar years. Thus for n 2 0, 

-n (Gregorian) = ( n  + 1) B.C.E. (Julian), 

and, for n 2 1, 

n (Gregorian) 

‘Before the common era; 

= n C.E. (Gregorian) = n C.E. (Julian). 

or, B.C. 
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Astronomers avoid this confusing situation by specifying dates in ‘julian days’.41 
Introduced in 1583 by Joseph Justus Scaliger, this method of dating is a strict counting 
of days backward and forward from 

J.D. 0 = Monday, January 1, 4713 B.C.E. (Julia.) 
= Monday, November 24, -4711 (Gregorian). 

Appendix A, section 1 of Neugebauer4 explains the choice of starting date in detail. 
Using Scaliger’s system, for example, the epoch of the Hebrew calendar is J.D. 347,996; 
the literature on the Mayan calendar commonly specifies epochs in julian days. Since 
our absolute date 0 is J.D. 1,721,425, it follows that 

J.D. n = our absolute date (n - 1721425). 

THE MAYAN CALENDAR 

The Maya, developers of an ancient Amerindian civilization in Central America, em- 
ployed three separate, overlapping calendrical systems, the Zong count, the haab, and 
the t ~ o l l c i n . ~ - ~ ~  Their civilization reached its zenith during the period 900-250 B .C.E.,  
and although the Maya survive to this day in Guatemala and in the Yucatan penin- 
sula of Mexico, the precise rules governing their calendars have been lost. What is 
known today has been recovered through ‘astro-archeological’ and historical research. 
There is general agreement on the Mayan calendrical rules; however, the exact cor- 
respondence between the Mayan calendars and Western calendars is still a matter 
of some dispute. Correspondences are proposed by interpreting Mayan recordings of 
astronomical phenomena, such as eclipses. In this paper, we give the details for the 
two most popular of the correspondences, the Goodman-Martinez-Thompson corre- 
lation6 and Spinden’s c o r r e l ~ t i o n . ~ ’ - ~ ~ *  A s uperb discussion of Mayan mathematics, 
astronomy, and calendrical matters is given by Lounsbury.14 

The long count is a strict counting of days from the beginning of the current cycle, 
each cycle containing 2,880,000 days (about 7885 solar years); the Maya believed that 
the universe is destroyed and re-created at  the start of every cycle. The units of the 
long count are 

1 kin = 1 dayt 
1 uinal = 20 kin (20 days) 
1 tun = 18 uinal (360 days) 
1 katun = 20 tun (7200 days) 
1 baktun = 20 katun (144,000 days) 

‘Some of Spinden’s date calculations are wrong. Here are three examples: on page 46 of ‘Maya 
dates and what they reveal’,13 he gives the equivalence J.D. 1,785,384 = February 10, 176 (Gregorian), 
but it should be February 11, 176 (Gregorian); on top of page 55 several Gregorian dates are off by 
one day; on page 57 he gives the equivalence J.D. 2,104,772 = August 30, 1050 (Gregorian), but i t  
should be July 27, 1050 (Gregorian). 

’It is uncertain whether the Maya considered the day as beginning at sunset or midnight. 
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Thus, the long count date 12.16.11.16.6 means 12 baktun, 16 katun, 11 tun, 16 uinal, 
and 6 kin, for a total of 1,847,486 days from the start of the Mayan calendar epoch. 
We write Mayan long count dates as Lisp lists of the constituent units, for example, 
(12 16 11 16 6). 

Although not relevant here, the Maya used the following larger units for longer 
time periods: 

1 pictun = 20 baktun (2,880,000 days) 
1 calabtun = 20 pictun (57,600,000 days) 
1 kinchiltun = 20 calabtun 
1 alautun = 20 kinchiltun (23,040,000,000 days) 

(1,152,000,000 days) 

An alautun is about 63,081,377 solar years! 
The starting epoch of the long count, according to the Goodman-Martinez-Thomp- 

son correlation,6 is taken as Wednesday, August 13, -3113 (Gregorian). This date 
equals September 8, 3114 B.C.E. (Julian), which,equals J . D .  584,285, that is, day 
-1,137,140 in our absolute reckoning. In other words, our absolute date 0 is long 
count 7.17.18.13.0, which is 1,137,140 days after the Mayan calendar epoch. Since 
this value will be used several times, we define it as a Lisp constant, 

(defconstant mayan-days-before-absolute-zero 
;; Number of days of the Mayan calendar epoch before absolute day 0, 
;; according to the Goodman-Martinez-Thompson correlation. 
1137140) 

Spinden1*-l3 proposes Monday, October 15, -3373 (Gregorian) as the epoch of the 
Mayan long count. This date equals November 11,3374 B.C.E. (Julian), which equals 
J.D. 489,384, that is, day -1,232,041 in our absolute reckoning. By Spinden's epoch, 
our absolute date 0 is long count 8.11.2.6.1. To use Spinden's correlation we would 
instead define 

(def constant mayan-days-bef ore-absolute-zero 
;; Number of days of the Mayan calendar epoch before absolute day 0, 
;; according to the Spinden correlation. 
1232041) 

Thus, to convert from a Mayan long count date to  an absolute date we need only 
compute the total number of days given by the long count and subtract the number 
of days before absolute date 0: 

(defun absolute-from-mayan-long-count (count) 
;; Absolute date corresponding to the Mayan long count count. 
;; which is a list (baktun katun tun uinal k i n ) .  

(+ (*  (first count) 144000);; Baktun. 
(* (second count) 7200) ;; Katun. 
(* (third count) 360) ;; Tun. 
(* (fourth count) 20) ;; Uinal. 
(fifth count) ;; Kin (days). 
(- ;; Days before absolute date 0. 
mayan-days-before-absolute-zero))) 
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The COMMON LISP functions first, second, third, fourth, and f i f t h  select, re- 
spectively, the first through fifth elements of a list. 

In the opposite direction, converting an absolute date to  a Mayan long count date, 
we need to add the number of days in the long count before absolute date 0, and then 
divide the result into baktun, katun, tun, uinal, and kin: 

(defun mayan-long-count-from-absolute (date) 
;; Mayan long count date of absolute date date. 

(baktun (quotient long-count 144000)) 
(day-of-baktun (mod long-count 144000)) 
(katun (quotient day-of-baktun 7200)) 
(day-of -katun (mod day-of -baktun 7200) ) 
(tun (quotient day-of -katun 360) ) 
(day-of -tun (mod day-of -katun 360)) 
(uinal (quotient day-of-tun 2 0 ) )  
(kin (mod day-of-tun 2 0 ) ) )  

( l i s t  baktun katun tun uinal k in ) ) )  

( l e t *  ((long-count (+ date mayan-days-before-absolute-zero)) 

Here we have used quotient, a more aptly named call to  COMMON LISP’S two- 
argument version of f l oo r ,  

(defun quotient (m n) 
( f loor  m n ) )  

which returns the value [m/nJ.  
The Maya used a civil calendar, the haab, based approximately on the solar year, 

consisting of 18 ‘months’ of 20 days each, together with 5 ‘monthless’ days at  the end. 
The months were called* 

(1) Pop (7) Yaxkin (13) Mac 
(2) Uo (8) Mol (14) Kankin 
(3) Zip (9) Chen (15) Muan 
(4) Zotz (10) Yax (16) Pax 
(5) Tzec (11) Zac (17) Kayab 
(6) Xu1 (12) Ceh (18) Cumku 

The five monthless days were an unlucky period called Uuyeb. Unlike Gregorian 
months, the days of the haab months begin at  0 and indicate the number of elapsed 
days in the current month. Thus, 0 Uo follows 19 Pop, and the fifth monthless day is 
followed by 0 Pop. This method of counting is used for years in the Hindu calendar 
discussed later in this paper. 

Because the haab calendar accounts for only 365 days (as compared to the mean 
length of the solar tropical year, 365.2422 days), it is assumed the civil calendar 
slowly drifted with respect to the seasons. Mayan astronomers were aware of this 

‘The haab and tzolkin month names are transliterated from the Yucatan Mayan dialect. The 
Guatemalan Maya used slightly different names. 
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drift, having calculated the solar year to be 365.2420 days long.15 (The Maya also 
took careful measurements of the lunar synodic month, which they calculated, quite 
accurately, to be equal to 29.53059 days.) 

The long count date 0.0.0.0.0 is considered to be haab date 8 Cumku (there is no 
disagreement here in the various correlations), which we specify by 

(defconstant mayan-haab-at-epoch ’(8 18)) 

representing haab dates as pairs (day month), where day and month are integers in 
the ranges 0 to 19 and 1 to 19, respectively. Thus we treat Uayeb as a defective 
nineteenth month and can convert an absolute date to a haab date by 

(defun mayan-haab-from-absolute (date) 
; ; Mayan haab date of absolute date date.  
(let* ((long-count (+ date mayan-days-before-absolute-zero)) 

(day-of-haab 
(mod (+ long-count 

( f irst may an-haab-at -epoch ) 
(* 20 (1- (second mayan-haab-at-epoch)))) 

365) 1 
(day (mod day-of-haab 2 0 ) )  
(month (l+ (quotient day-of-haab 20)))) 

(list day month))) 

It is not possible to convert a haab date to  an absolute date, since, without a ‘year’, 
there is no unique corresponding absolute date. We can ask, though, for the number 
of days between two dates on the haab calendar-the calculation is elementary: 

(defun mayan-haab-difference (datel date21 
;; Number of days from Mayan haab date datel to the next 
;; occurrence of Mayan haab date date2. 
(mod (+ (* 20 (- (second date21 (second datel))) 

(- (first date2) (first datel))) 
365) 1 

Note that COMMON LISP’S mod, unlike rem, always returns a non-negative value 
for Q positive divisor; we use this property in the last function and frequently below. 
In the absence of such a modulus function, a conditional test could be used to map 
a remainder of -1 to n - 1, and so on. The function mod also applies to  non-integer 
values, so, for example, (mod x 1) returns the fractional part of x. 

The function mayan-haab-dif f erence can be used as follows to compute the ab- 
solute date of the Mayan haab date on or before a given absolute date: 

(defun mayan-haab-on-or-before (haab date) 
;; Absolute date of latest date on or before absolute date date 
;; that is Mayan haab date haab. 

(- date 
(mod (- date 

(mayan-haab-difference 
(mayan-haab-f rom-absolute 0) haab) ) 

365) 1) 
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The third Mayan calendar, the tzolkin (or divine) calendar, was a religious calendar 
consisting of two cycles, a thirteen day count and a cycle of twenty names: 

(1)  Imix (5) Chicchan (9) Muluc (13) Ben (17) Caban 
(2) Ik (6) Cimi (10) o c  (14) Ix (18) Etznab 
(3) Akbal (7) Manik (11) Chuen (15) Men (19) Cauac 
(4) Kan (8) Lamat (12) Eb (16) Cib (20) Ahau 

Unlike the haab, the counts and names cycle simultaneously, so, for example, 13 Etz- 
nab precedes 1 Cauac which precedes 2 Ahau which precedes 3 Imix, and so on. Since 
20 and 13 are relatively prime, this progression results in 260 unique dates, forming 
the divine year. 

For the tzolkin calculations, and in the remainder of the paper, we will need a 
function like mod, but with its values adjusted so that the modulus of a multiple of 
the divisor is the divisor itself, rather than 0: 

(defun adjusted-mod (m n) 
;; Positive remainder of m / n  with n instead of 0. 
(I+ (mod (1- m) n))) 

The long count date 0.0.0.0.0 is taken to be tzolkin date 4 Ahau (the different 
correlations agree on this, too). Representing tzolkin dates as pairs of positive integers 
(number name), where number and name are integers in the ranges 1 to 13 and 1 to 
20, respectively, we specify 

(defconstant mayan-tzolkin-at-epoch ' (4  20)) 

As with the haab, we can convert from an absolute date to  a tzolkin date with 

(defun mayan-tzolkin-from-absolute (date) 
;; Mayan tzolkin date of absolute date date.  
(let* ((long-count (+ date mapan-days-before-absolute-zero)) 

(number 
(adjusted-mod (+ long-count 

(first mayan-tzolkin-at-epoch)) 
13) 1 

(name 
(adjusted-mod (+ long-count 

(second mayan-tzolkin-at-epoch)) 
20) 1) 

(list number name))) 

Just as with the haab calendar, it is impossible to  convert a tzolkin date to  an 
absolute date. Unlike the haab calendar, however, because day numbers and day 
names cycle simultaneously, to calculate the number of days between two given tzolkin 
dates requires the solution to a pair of simultaneous linear congruences.16 Suppose we 
want to know the number of days x from tzolkin date ( d l  n1) until the next occurrence 
of tzolkin date (d2 722). We must have 

d l  4- x z d2 (mod 13), 
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or, equivalently, x = d2 - d l  + 13i, for some integer i. Similarly, we must have 

z ,= n2 - nl (mod 20), 

which becomes 

d2 - dl + 13i = n2 - nl (mod 20). 

Hence we need to  know the values of i satisfying 

13i = 722 - nl - dz + dl (mod 20). 

Multiplying each side by -3, the multiplicative inverse of 13 modulo 20, gives 

i 3 3(d2 - dl - n2 + nl) (mod 20), 

from which we conclude that 

x = d2 - dl + 13[3(d2 - dl  - nz + nl) mod 201. 

However, because we want the next occurrence of (d2 nz), we must guarantee that x 
is non-negative. Thus we write, 

(def un mayan-tzolkin-dif f erence (datel date2) 
;; lumber of days from Uayan tzo lkin  date datel t o  the next 
;; occurrence of Mayan tzolkin date date2. 

( l e t *  ((number-diff erence (- (first date2) (first date l )  ) 
(name-difference (- (second date2) (second d a t e l ) ) ) )  

(mod (t number-dif f erence 
(* 13 (mod (* 3 (- number-difference name-difference)) 

2 0 )  1) 
260) ) 

As with the haab calendar, this function can be used to compute the absolute date 
of the Mayan tzolkin date on or before a given absolute date: 

(defun mayan-tzolkin-on-or-before (tzolkin date) 
;; Absolute date of l a t e s t  d a t e  on OT before absolute date date 
; ; that i s  Mayan tzolkin date trolkin. 

(- date 
(mod (- date (mayan-tzolhin-diff erence 

(mayan-tzolkin-from-absolute 0 )  
tzolkin) ) 

260))) 

A popular way for the Maya to specify a date was to use the haab and tzolkin dates 
together, forming a cycle of the least common multiple of 365 and 260 days, 18980 
days or approximately 52 solar years. This cycle is called a calendar mund,15* l7 and 
we can ask for the most recent absolute date, on or before a given absolute date, that 
falls on a specified date of the calendar round. 
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Suppose the haab date of interest is (D M) and the tzolkin date of interest is (d n); 
we seek the latest absolute date x, on or before the given absolute date, that satisfies 

x + D o  E D (mod20), 
x + M o  = M (mod 18), 

x + d o  = d (mod 13), 
x + n o  G n (mod 20), 

where (Do Mo) is the haab date of absolute date 0, and (do no) is the tzolkin date of 
absolute date 0. The first two of these congruences combine to  become 

x = AH (mod 365), (1) 

where 

AH = mayan-haab-diff erence applied to (D M )  and (DO Mo).  

The last two of these congruences combine to  become 

x = AT (mod 260), 

where 

AT = mayan-tzolkin-difference applied to (d n) and (do no). 

Congruence (1) means that 

x = AH + 365i, 

and combining this with congruence (2) we get 

365i = AT - AH (mod 260). 

(3) 

This has a solution onZy if AT - AH is divisible by 5; otherwise the haab-tzolkin 
combination cannot occur. So, dividing by 5 we get 

AT - AH 
5 

73i E (mod 52), 

and multiplying this by the multiplicative inverse of 73 modulo 52 (which, by coinci- 
dence, is 5), we find 

i = AT - AH (mod 52), 

so that i = AT - AH + 52u, for some u. Plugging this into equation (3) yields 

2 = AH + 3 6 5 ( A ~  - A,) + 1 8 9 8 0 ~ .  

Thus we want the last date on or before the given absolute date that is congruent 
to AH + 3 6 5 ( A ~  - AH) modulo 18980. This is computed in a manner identical to 
that in the function Kday-on-or-before in our earlier paper,l and we have: 
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(defun mayan-haab-tzolkin-on-or-bef ore (haab tzolkin date) 
;; Absolute date of latest date on or before date that is Hayan 
;; haab date haab and tzolkin date tzolkin; returns nil if such 
;; a haab-tzolkin combination is impossible. 
(let* ((haab-difference 

(mayan-haab-difference (mayan-haab-from-absolute 0 )  
haab) 

(tzolkin-dif f erence 
(mayan-tzolkin-diff erence (mayan-tzolkin-from-absolute 0) 

tzolkin) ) 
(difference (- tzolkin-difference haab-difference))) 

(if (= (mod difference 5) 0 )  
(- date 

(mod (- date 

18980) ) 
(t haab-dif f erence (* 365 difference) 1) 

nil)));; haab-tzolkin combination is impossible. 

This function can be used to compute the number of days between a pair of dates 
on the calendar round or to write a function mayan-haab-tzolkin-on-or-after; we 
leave these to the reader. 

THE FRENCH REVOLUTIONARY CALENDAR 
The French Revolutionary Calendar9* l8 was instituted by the National Convention 
of the French Republic in October 1793. Its epoch was absolute date 654,415, that is, 
Saturday, September 22, 1792 (Gregorian), the autumnal equinox of that year, and 
also the first day following the establishment of the Republic. It went into effect on 
Sunday, November 24, 1793 (Gregorian), and was used by the French until Tuesday, 
December 31, 1805 (Gregorian); on Wednesday, January 1, 1806 (Gregorian), the 
Revolutionary calendar was abandoned by Napoleonic edict and France reverted to 
the Gregorian calendar. 

Following the example of several ancient calendars, including the Coptic, Ethiopic, 
and Persian: the French Revolutionary calendar divided the year into 12 months 
containing exactly 30 days each, followed by a period of five monthless days (six in 
leap years). The names of the twelve months, poetically coined by Fabre d'Eglantine, 
were taken from the seasons in which they occurred: 

(1) VendCmiaire (vintage) 
(2) Brumaire (fog) 
(3) Frimaire (sleet) 
(4) Nivbse (snow) 
( 5 )  Pluvibse (rain) 
(6) Ventbse (wind) 

(7) Germinal (seed) 
(8) Florhal (blossom) 
(9) Prairid (pasture) 
(10) Messidor (harvest) 
(11) Thermidor (heat) 
(12) Fructidor (fruit) 

Contemporary British journalists sarcastically dubbed them Slippy, Nippy, Drippy, 
Freezy, Wheezy, Sneezy, Showery, Flowery, Bowery, Wheaty, Heaty, Sweety. 

We will use a list (month day year) to represent the date, treating the monthless 
days as a thirteenth month, as in the Mayan haab calendar: 
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(defun french-last-day-of-month (month year) 
; ; Last day of 

30 

month, year on the French Revolutionary calendar. 
(if (< month 13) 

(if (french-leap-year y e a r )  
6 

5 ) ) )  

The leap-year rules are given below. 
Although not relevant to  our calculations, each month was divided into three 

‘decades’ of ten days each; the tenth day was considered a day of rest. (This made 
the new calendar unpopular because under the Gregorian calendar the workers had 
had every seventh day off.) The ten days were named by their ordinal position in the 
decade, 

(1) Primidi (6) Sextidi 
(2) Doudi (7) Septidi 
(3) Tridi (8) Oxtidi 
(4) Quartidi (9) Nonidi 
(5) Quintidi (10) Decadi 

Each day was divided into ten ‘hours’, each of which was divided into one hundred 
‘minutes’, each of which was divided into one hundred ‘seconds’. 

The five or six monthless days that were added at  the end of each year were holidays 
called sansculottides, celebrating various attributes of the Revolution: 

(1) Jour de la Vertu (virtue day) 
(2) Jour du Genie (genius day) 
(3) Jour du Labour (labor day) 
(4) Jour de la Raison (reason day) 
( 5 )  Jour de la Recompense (reward day) 
((6) Jour de la Revolution (revolution day)} 

The leap-year structure is given in curly brackets. 
The leap year rule is complicated by historical fact.18 Originally, the calendar was to 

be kept in synchronization with the solar year by using the extra day in a leap year to 
force the new year, 1 VendCmiaire, to occur at the autumnal equinox. Unfortunately, 
the irregular variations of a day or two in the occurrence of the equinox made this 
impracticable and a proposal was put forward for a simpler, more regular, leap year 
rule; however, the calendar was abandoned before this rule could be adopted. Thus, 
leap years actually occurred in the 3rd, 7th, and 11th years and would have occurred 
in the 15th and 20th years, had the calendar still been in use. The proposed rule then 
would have been: 

every 4th year is a leap year, except 
every 100th year is not a leap year, except 
every 400th year is a leap year, except 
every 4000th year is not a leap year, 
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giving an average of 365.24225 days per year, an error of about 1 day in 20,000 years. 
The following Lisp function uses historical practice based on equinoxes for years 1 

through 20 and uses the proposed rule for years beyond 20: 

(defun french-leap-year (year) 
;; True if year is a leap year on the French Revolutionary calendar. 
(or (member year '(3 7 11));; Actual. 

(member year '(16 20)) ;; Anticipated. 
(and (> year 2 0 )  ;; Proposed. 

(= 0 (mod year 4)) 
(not (member (mod year 400) '(100 200 300))) 
(not (= 0 (mod year 4000)))))) 

Conversion of a French Revolutionary date to  an absolute date is thus done by 
summing all days before that date, including the number of days before the calendar 
began, 365 days for each prior year, all prior leap days, and the number of prior days 
in the present year: 

(defun absolute-from-french (date) 
; ; Absolute date of French Revolutionary date .  
(let* ((month (first date)) 

(day (second date)) 
(year (third date) 1) 

(+ 664414;; Days before start of calendar. 
(* 365 (1- year));; Days in prior years. 
;; Leap days in prior years. 
(if (< year 2 0 )  

(quotient year 4);; Actual and anticipated practice, 
;; that is, years 3, 7, 11, and 15. 

;; Proposed rule--there were 4 leap years before year 20. 
(+ (quotient (1- year) 4) 

(- (quotient (1- year) 100)) 
(quotient (1- year) 400) 
(- (quotient (1- year) 4000)))) 

(* 30 (1- month));; Days in prior months this year. 
day)));; Days so far this month. 

Calculating the French Revolutionary date from the absolute date d involves se- 
quentially determining the year, month, and day of the month. The year is first 
closely approximated from below by ld/366J and then found precisely by stepping 
through subsequent years (that is, by a linear search). The month is then found by a 
similar linear process, and the day of the month is determined by subtraction: 

(defun french-from-absolute (date) 
; ; French Revolutionary date (month day year) of absolute date;  
;; returns nil if date is before the French Revolution. 

(if (< date 654415) 

(let* ((approx 
nil;; pre-French Revolutionary date. 

;; Approximate year from below. 



396 E. M. REINGOLD, N. DERSHOWITZ AND S. M. CLAMEN 

(quotient (- date 664414) 366)) 

(+ approx 
(year ; ; Search forward from the approximation. 

(sum i y approx 
(>= 

(month 
(I+ (sum 

(> 

(day 
(- date 

dat e 
(absolute-from-french (list 1 i (1+ y))))))) 

i m l  
date 
(absolute-from-french 

;; Search forward from Vendemiaire. 

(list m 
(french-last-day-of-month m year) 
year) 1) 1) 1 

;; Calculate the day by subtraction. 

(1- (absolute-from-french (list month i year)))))) 
(list month day year) ) 1) 

THE OLD HINDU CALENDARS 

The Hindus have both solar and lunar calendars. Solar dates are in use primarily in 
southern India and lunar dates are used elsewhere; virtually all religious holidays are 
determined by the lunar calendar. In the Hindu lunar system, like other lunisolar 
calendars, months follow the lunar cycle and are synchronized with the solar year by 
introducing occasional leap months. Unlike the lunisolar Hebrew calendar (described 
in algorithmic detail in our previous paper’), the Hindu intercalated months do not 
follow a fixed pattern; instead, like the lunisolar Chinese calendar,” their occurrence 
depends on astronomical factors. However, unlike other calendars, a day can be 
omitted any time in the lunar month. 

Current Hindu calendars are based on approximations to  the true times of the sun’s 
entrance into the signs of the zodiac and of lunar conjunctions (new moons). But, 
some earlier Hindu calendars appear instead to  have used an approximation to mean 
times.20* 21 It is this mean calendar, as described in sections 6-15 of van Wijk,20 that 
we implement here. The mean and true calendars can differ by a few days and/or 
can be shifted by a month. For an ancient description of Hindu astronomy, calendars, 
and holidays, see the book on India by al-Biruni.22* 

There are various epochs that are, or have been, used as starting points for the 
enumeration of years in India, and for each there are two versions, one beginning 
with year 0 (expired years) and the other with year 1 (current year). We use the 
Kali Yuga (‘Iron Age’) epoch, according to  which the beginning of the first day of 
year 0 K.Y. is midnight at the start of F’riday, January 23, -3101 (Gregorian). This 

‘There is some confusion of dates in the note (on page 358) by R. Schram to volume 11, page 2 of 
Sachau’s translation of this book, where the following equivalences are given: Thursday, February 25, 
1031 C.E. (Julian) = 1 Caitra 953 $aka Era = 28 Safar 422 Anno Hijrae = 19 Ispanddrmadh-Mlh 399 
Anno Persarum, and New Year 400 Anno Persarum = March 9, 1031 C.E. (Julian) = J.D. 2,097,686. 
In fact, February 25, 1031 c.E. (Julian) = 29 Safar 422 Anno Hijrae = J.D. 2,097,686. 
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date equals February 18,3102 B.C.E. (Julian), which equals 3.D. 588,466, that is, day 
-1,132,959 in our absolute reckoning. That midnight is considered to  have been the 
start of a new solar year and a new lunar month; indeed, according to the data in 
the Sfirya-Siddh&1ta,2~ it is the time of the most recent conjunction of all the visible 
planets. The (expired) year number is the number of solar (sidereal, not tropical*) 
years that have elapsed since the onset of the Kali Yuga. As van Wijk20 explains: 

We count the years of human life in expired years. A child of seven years 
has already lived more than seven years; but on the famous 18 Brurnaire 
de I’An VIII de la Rdpublique Fmnpise une et indivisible only 7 years 
and 47 days of the French Era had elapsed. 

The Kali Yuga epoch marks-in Hindu chronology-the onset of the fourth and final 
stage (lasting 432,000 years) of the 4,320,000-year era beginning with the last re- 
creation of the world. 

The solar months are named after the signs of the zodiac (but may differ from 
region to region): 

(1) Mesha (Aries) (7) TulS (Libra) 
(2) Vrshabha (Taurus) (8) V@chika (Scorpio) 
(3) Mithuna (Gemini) (9) Dhanus (Sagittarius) 
(4) Karka (Cancer) (10) Makara (Capricorn) 
(5) Simha (Leo) (11) Kumbha (Aquarius) 
(6) KanyZ (Virgo) (12) Mina (Pisces) 

The (sidereal) solar year is taken to  be 

” 577’ ’17’ 828 = 365.25875648148148 * - - 
4,320,000 

(civil) days long. Different Indian astronomical treatises give slightly varying con- 
stants; this, and the constants that follow, are from the Si i rya -S iddhhh-~ ,~~  circa 
1000 C.E. The solar new year is called M e s h  saqzkr6nti; it is the day of the first 
sunrise after the sun enters Mesha. Each subsequent month begins when the sun has 
traveled one twelfth of the way around the ecliptic (the sun’s path in the sky) and 
entered a new sign of the zodiac. If the sign is entered before sunrise, then it is day 
one of a new month; otherwise, it is the last day of the previous month. Hence, even 
though in the mean system the speed of the sun is taken to be constant, months vary 
in length. 

The name of a lunar month depends on the position of the sun in the zodiac at 
the beginning of that lunar month, and is derived from the names of asterisms (star 
groups) along the ecliptic: 

‘A tropical year is the time it takes for the sun to return to the same position in its apparent 
path, while a sidereal year is the time it takes for the sun to return to the same celestial longitude; 
the difference is slight. 
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(1) Chaitra (7) Aiivina 
(2) Vaiiiikha (8) KZrttika 
(3) Jyaishtha (9) Margaiira 
(4) Ashsdha (10) Pausha 
( 5 )  Sravaga (11) Miigha 
(6) Bhadrapada (12) Phdguna 

Some regions of India begin the year with Kiirttika andfor use different or shifted 
month names. We follow the south-India method in which months begin and end 
at new moons (the arncinta scheme); in the north, months go from full moon to full 
moon (the p4rpirn6nta scheme). Our absolute day 0 is 18 Makara, 3101 K.Y. on the 
mean solar calendar and 19 Pausha on the lunar one. 

Since a solar month (the mean time for the sun to  traverse a zodiacal sign) is longer 
than a lunar month, a lunar month is intercalated whenever two new moons occur 
within one sign of the Hindu zodiac. The two months starting within that sign take 
the same name, except that the first is called adhika (‘added’) and the second nija 
(‘regular’). 

The lunar cycle is divided into thirty phases (or ‘lunar days’), called tithis; because 
a mean lunar month is less than thirty (civil) days long, a tithi is somewhat shorter 
than a day. The first fifteen tithis belong to the suddha (‘bright’, waxing) fortnight 
and the second fifteen, to  the bahula (‘dark’, waning) fortnight. The day of the lunar 
month corresponds to  the phase of the moon at  sunrise, and is usually referred to 
by ordinal number within one fortnight or the other; we use ordinal numbers from 
1 to 30. Just as there are leap months, caused by two new moons occurring within 
the same zodiacal sign, there are also ‘lost’ days whenever a tithi begins and ends 
between one sunrise and the next. 

Suppose we can determine the longitudinal positions of the sun and moon, relative 
to the celestial sphere, at any given time. Then to  determine the lunar Hindu date of 
any given day, we perform the following sequence of operations: 

1. Determine the phase of the moon at  sunrise of the given day, by taking the 
difference in longitudes between the positions of the sun and moon. This gives 
the ordinal number of the tithi current at  sunrise. 

2. Determine when the last new moon was before sunrise of the current day. 

3. Determine the position of the sun at that new moon. The zodiacal sign in which 
it was determines the name of the current month. 

4. Compare the current month name with that of the next new moon. If they are 
the same, then it is a leap month. 

The calendars in use in recent times follow a similar pattern, but require much 
more elaborate calculation to  approximate the true positions of the sun and moon 
and the time of local sunrise. These more elaborate calculations can result, on rare 
occasions, in expunged months and intercalated 24 

Four constants play a role in the mean computations: 
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(defconstant solar-sidereal-year (+ 366 279457/1080000)) 
(def constant solar-month (/ solar-sidereal-year 12) 1 
(def constant lunar-sidereal-month (+ 27 4644439/14438334) 
(defconstant lunar-synodic-month (+ 29 7087771/13358334)) 

We work exclusively with rational numbers; otherwise, double precision is required 
for many of the calculations. Unlike table-based methods, using rational numbers 
gives perfect fidelity to the sources. 

The sidereal year is the mean number of days it takes for the sun to return to  the 
same longitudinal point with respect to the stars, and the solar month is the mean 
time it takes it to traverse one sign of the zodiac. Similarly, the sidereal month is the 
mean time it takes for the moon to return to the same point, in which time the sun 
would have moved farther on. The synodic month takes the motion of the sun into 
account-it is the mean time between new moons (lunar conjunctions). Civil days 
begin at sunrise; we use mean sunrise, one quarter of a day past midnight, that is, 
~ : O O A . M . ,  in our calculations. 

Once we know the position of the sun in degrees of celestial longitude, 

(defun solar-longitude (days) 
;; Mean sidereal longitude of the sun, in degrees, 
; ; at date and fraction of day days. 

(* (mod (/ days solar-sidereal-year) 1) 360)) 

we can determine the zodiacal sign: 

(defun zodiac (days) 
;; Zodiacal sign of the sun, as integer in range 1..12, 
;; for date and fraction of day days. 
(I+ (quotient (solar-longitude days) 30) ) ) 

Now, converting an absolute date to the date according to the Hindu solar calendar 
is straightforward: 

(defun old-hindu-solar-from-absolute (date) 
;; Hindu solar month, day, and year of absolute date date. 
(let* ((hdate (+ date 1132959 1/4));; Sunrise on Hindu date. 

(year (quotient hdate solar-sidereal-year) 
(month (zodiac hdate)) 
(day (i+ (floor (mod hdate solar-month))))) 

(list month day year) 1) 

Inverting this calculation is no harder: 

(defun absolute-f rom-old-hindu-solar (date) 
;; Absolute date corresponding to Hindu solar date date. 
(let* ((month (first date) 

(day (second date)) 
(year (third date))) 

(floor (+ (* year solar-sidereal-year);; Days in elapsed years. 
(* (1- month) solar-month) ;; In months. 
day -1/4 
-1132969)))) 

; ; Whole days until midnight. 
;; Days before absolute day 0. 
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To compute the lunar date, we need to determine the position of the moon in 
degrees of celestial longitude: 

(defun lunar-longitude (days) 
;; Hean sidereal longitude of the moon, in degrees, 
; ; at date and fraction of day days. 

(* (mod (/ days lunar-sidereal-month) I) 360)) 

To get the phase of the moon, we must measure the distance between the positions 
of the sun and the moon. The following function converts that value, in degrees, to 
a number between 1 and 30: 

(def un lunar-phase (days) 
;; Longitudinal distance between the sun and the moon, as an integer 
;; in the range 1. .30,  at date and fraction of day days. 

( I +  (quotient 
(mod (- (lunar-longitude days) (solar-longitude days)) 

360) 
12) 1) 

To determine the number of the month, we look back to the last occurrence of a 
new moon, see where the sun was at that time, and then give the lunar month the 
number of the next solar month. Similarly, for the lunar year number, we use the 
solar year in which the next lunar month falls. The most recent new moon is found 
by 

(defun new-moon (days) 
;; Time of the most recent mean conjunction at or before 
; ; date and fraction of day days. 

(- days (mod days lunar-synodic-month))) 

We are now ready to compute the Hindu date, given any absolute date. We use 
a list (month leapmonth day year) to represent a date, where month is an integer 
in the range 1 through 12, day is an integer in the range 1 through 30, year is a 
non-negative integer, and leapmonth is either t or nil, corresponding to ‘true’ and 
‘false’: 

(defun old-hindu-lunar-from-absolute (date) 
;; Hindu lunar month, day, and year of absolute date date. 
(let* ((hdate (+ date 1132959)) ;; Hindu date. 

(sunrise (+ hdate 1/41] 
(last-new-moon ;; Last new moon. 

(next -new-moon ;; Next new moon. 

(day (lunar-phase sunrise)) 
(month 

(leapmonth ;; If next month the same 

; ; Sunrise on that day. 

(new-moon sunrise) 1 

(+ last-new-moon lunar-synodic-month)) 
;; Day of month. 
;; Honth of lunar year. 

(adjusted-mod (I+ (zodiac last-new-moon)) 12)) 
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(= (zodiac last-new-moon) 
(zodiac next-new-moon) 1) 

(next -month ;; Beginning of next month. 
(t next-new-moon 

(if leapmonth lunar-synodic-month 0 ) ) )  
(year ;; Solar year of next month. 
(quotient next-month solar-sidereal-year) 

Unlike the French Revolutionary calendar, or the calendars in our previous paper,l 
there is no direct way of converting a lunar Hindu date to an absolute date, since 
years and months do not have a fixed length. To invert the process and derive the 
absolute date from a Hindu lunar date, we first find a lower bound on the possible 
absolute date, and then perform a linear search for the exact correspondence. For 
this purpose, it is convenient to be able to compare Hindu lunar dates: 

(list month leapmonth day year))) 

(defun old-hindu-lunar-precedes (datel date2) 
: ; True if Hindu lunar datel precedes date2. 
(let* ((monthl (first datel)) 

(month2 (first date211 
(leapl (second datel)) 
(leap2 (second date21 
(dayl (third datel)) 
(day2 (third date21 1 
(yearl (fourth datel)) 
(year2 (fourth date2111 

(or (< year1 year21 
(and (= yearl year21 

(or (< monthl month21 
(and (= monthl month21 

(or (and leapl (not leap211 
(and (equal leapl leap21 

(C dayl day2))))))))) 

Finally, taking into account the possible nonexistence of a particular date, 

(defun absolute-f rom-old-hindu-lunar (date) 
; ; Absolute date corresponding to Hindu lunar date date; 
;; returns nil if no such date exists. 
(let* ((years (fourth date)) 

;; minus a month's possible difference between the 
;; solar and lunar year. 

Approximate date from below by adding days. . . 
(t (floor (* years solar-sidereal-year)) ;; in years, 

(floor (* months lunar-synodic-month) ) ; ; in months , 
-1132969)) ;; and before absolute date 0. 

; ; Elapsed years. 
(months (- (first date) 2));; Elapsed whole months, 

(approx; ; 

(try 
(+ approx ;; Search forward to correct date, 

(sum 1 i approx ;; or just past it. 
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(old-hindu-lunar-precedes 
(old-hindu-lunar-from-absolute i) 
date) 1) 1 1 

(if (equal (old-hindu-lunar-from-absolute try) date) 
try 

nil)));; date non-existent on Hindu lunar calendar. 

CONCLUSION 

Our goal in this series of papers is to make accurate calendrical algorithms read- 
ily available, since calendrical problems are notorious for plaguing software. Some 
examples : 

1. The COBOL programming language allocates only two decimal digits for inter- 
nal storage of years, so untold numbers of programs are expected to  go awry on 
New Year’s Eve of the coming century.25 

2. Many programs err in, or simply ignore, the century rule for leap years on 
the Gregorian calendar (every 4th year is a leap year, except every 100th year 
which is not, except every 400th year which is). For example, early releases 
of the popular spreadsheet program Lotus8 1-2-38 treated 2000 as a non-leap 
year, a problem eventually fixed. But, all releases of Lotus8 1-2-3* take 1900 
as a leap year; by the time this error was recognized, the company deemed it 
too late to correct: ‘The decision was made a t  some point that a change now 
would disrupt formulas which were written to  accomodate [sic] this anomaly.’26 

3. Various programs calculate the Hebrew calendar by first determining the date 
of Passover using Gauss’s method;27 this method is correct only when sufficient 
precision is used, so such an approach often leads to  errors. 

4. At least one modern, standard source for calendrical matters, Parise: has errors, 
some of which are presumably due to  the algorithms used to  produce the tables.* 

Though the calendars described in this paper are mainly of historical interest, the 
Mayan and French Revolutionary calendars are incorporated in version 19 of GNU 
Emacs.28 The Hindu can serve as the basis for implementing the various more intri- 
cate calendars in use on the Indian subcontinent today, and perhaps also the Chinese 
~a1endar . l~ The algorithms presented also serve to illustrate some basic features of 
nonstandard calendars: The Mayan calendar requires dealing with multiple, indepen- 
dent cycles and exemplifies the kind of reasoning often needed for calendrical-historical 
research. The F’rench calendar is an example of one in which two cycles (years and 
‘decades’) are synchronized. The Hindu calendar is an example of one in which the 
cycles (days of the month, months of the year) are irregular. 

‘Examples include: The Mayan date 8.1.19.0.0 is given incorrectly as February 14, 80 (Gregorian) 
on page 290; the dates given on pages 325-327 for Easter for the years 1116, 1152, and 1582 are not 
Sundays; the epact given for 1986 on page 354 is wrongly given as 20. 
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