
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 2, MARCH 1981

Tidier Drawings of Trees
EDWARD M. REINGOLD AND JOHN S. TILFORD

Abstract-Various algorithms have been proposed for producing tidy
drawings of trees-drawings that are aesthetically pleasing and use mini-
mum drawing space. We show that these algorithms contain some
difficulties that lead to aesthetically unpleasing, wider than necessary
drawings. We then present a new algorithm with comparable time and
storage requirements that produces tidier drawings. Generalizations
to forests and m-ary trees are discussed, as are some problems in dis-
cretization when alphanumeric output devices are used.

Index Terns-Data structures, trees, tree structures.

INTRODUCTION
IN a recent article [6], Wetherell and Shannon presented algo-

rithms for producing "tidy" drawings of trees-drawings
that use as little space as possible while satisfying certain
aesthetics. The basic task is the assignment of x and y co-
ordinates to each node of a tree, after which a straightforward
plotting or printing routine generates a drawing of the tree.
Wetherell and Shannon give three aesthetics in an attempt to
define a "tidy" drawing of a binary tree.
Aesthetic 1: Nodes at the same level of the tree should lie

along a straight line, and the straight lines defining the levels
should be parallel.
Aesthetic 2: A left son should be positioned to the left of

its father and a right son to the right.
Aesthetic 3: A father should be centered over its sons.
Although not mentioned in [6], Aesthetic 1 was also meant

to require that the relative order of nodes across any level be
the same as in the level order traversal of the tree. This can be
shown to guarantee that edges in the tree do not intersect
except at nodes.
The algorithms presented in [6], try to achieve these aes-

thetics while at the same time minimizing width. Similar algo-
rithms were developed by Sweet [3] for use in his thesis, but
were never published. The basic algorithm of [6] proceeds as
follows. First, store in each node its level in the tree; this is
essentially its y coordinate. Then traverse the tree in post-
order, pausing at each node to give it an x coordinate. Initially,
a provisional x coordinate is assigned according to this rule: if
the node is a leaf, give it the next available position on its
level; if it has only a left son, give it a position one unit to the
right of its son; if it has only a right son, give it a position one
unit to the left of its son; otherwise (the node has two sons)
give it the average of their positions. Meanwhile, keep track

Manuscript received April 10, 1980.
The authors are with the Department of Computer Science, Univer-

sity of Illinois, Urbana-Champaign, IL 61801.

Fig. 1. Final positioning of example tree as drawn by Algorithm WS.

of the next available position on each level with an array
NEXT POS, indexed by level, in which each value is set to two
greater than the coordinate of the last node assigned on the
corresponding level.

If a provisional position is less than the next available posi-
tion on that level, the node is given the next available position,
and its subtrees are shifted to the right so as to be properly
positioned relative to it. Actually, the amount of the shift is
just stored in the current node and applied with all the other
shifts during a subsequent preorder traversal. Whenever a shift
is applied to a node, all nonleaf nodes to its right on the same
level must have at least the same shift applied to them and
their subtrees (because the nodes in those subtrees were posi-
tioned without knowledge of shifts that would occur above
them). This necessitates another array, indexed by level,
containing the most recent shift applied on each level.

DIFFICULTIES
Algorithm WS works well in many cases; however, it con-

tains an important deficiency. It can produce drawings that are
not really pleasing and that can be made narrower within the
constraints of the aesthetics. In Fig. 1, for example, nodes Y
and Z are too far apart; instead, the tree ought to be drawn as
shown in Fig. 2 because that tree is both narrower and aes-
thetically more pleasing, in fact, "tidier."
The problem of Algorithm WS in the drawing of Fig. 1 is the

influence of the fixed left margin, defmed by the values of the
array NEXT _POS. Since node Y is a leaf, it receives the next
available position on its level, 6. Now the lower part of the

0098-5589/81/0300-0223$00.75 © 1981 IEEE

223

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 2, MARCH 1981

Fig. 4. A tree and its mirror image positioned by Algorithm WS.

Fig. 2. Example tree as drawn by Algorithm TR.

Fig. 3. Example tree drawn by a modified Algorithm WS.

right subtree is built as usual, with Z being placed at 12. X,
the father of Y and Z, is given the average of their positions,
i.e., 9, and V receives the average of the positions ofW and X,
which is 8. This is too far to the left according to NEXT_POS,
so the subtree rooted at V is shifted two units to the right.
The resulting tree is two units wider than necessary. The
culprit is the empty space in the middle of the tree; it caused
Y to be placed too far to the left when it should have been
the minimum distance from Z (as A is from B). As the num-
ber of nodes increases, this anomalous behavior of Algorithm
WS can worsen.

Wetherell and Shannon present a modification to Algorithm
WS that guarantees minimum width drawings at the expense of
Aesthetic 3. Although the drawing it produces for the sample
tree (see Fig. 3) is not too wide, the drawing of Fig. 2 is much
better. Vaucher [5], independently of [3] and [6], developed
a tree printing algorithm that seems to avoid this problem but
does not satisfy the additional aesthetic constraint introduced
in the next section.
As our example illustrates, the difficulty with Algorithm WS

Fig. 5. A tree for which the narrowest drawing that satisfies Aesthetics
1-3 violates Aesthetic 4. The subtrees rooted at P and Q are iso-
morphic, but must be drawn nonisomorphically (as shown) to obtain
a minimum width drawing.

stems from the fact that the shape of a subtree is influenced
by the positioning of nodes outside that subtree; Sweet [3]
made a similar observation. As a consequence, symmetric
trees may be drawn asymmetrically, or more generally, a tree
and its reflection will not always produce mirror image draw-
ings; even the same subtree may appear differently in different
parts of the tree. Fig. 4 shows a small tree and its reflection
whose drawings by Algorithm WS are not mirror images.

A NEW AESTHETIC AND ALGORITHM
It is certainly desirable that a symmetric tree be drawn

symmetrically; therefore, we introduce a new aesthetic that
guarantees this (along with a somewhat stronger requirement).
Aesthetic 4: A tree and its mirror image should produce

drawings that are reflections of one another; moreover, a sub-
tree should be drawn the same way regardless of where it
occurs in the tree.
We pay a price for this aesthetic in terms of the width of the

tree. Fig. 5 illustrates a tree for which the narrowest drawing
that satisfies Aesthetics 1-3 violates Aesthetic 4. Nevertheless,
we consider Aesthetic 4 to be more important than minimum
width since the shape of the printed tree and its reflection
ought to be independent of its surroundings to aid in human
perception. In any case, with the exception of the theoreti-
cally interesting but impractical linear programming technique
of [2], the published tree printing algorithms all fail to pro-
duce minimum width placements, even without the stricture
of Aesthetic 4.

224

REINGOLD AND TILFORD: TIDIER DRAWINGS OF TREES

Satisfying Aesthetic 4 requires an algorithm in which nodes
outside a subtree do not interfere with the relative positionings
of nodes in the subtree, so that the inherent asymmetry of the
postorder traversal will not be manifested in the drawing. To
this end we propose Algorithm TR, based on the following
heuristic: two subtrees of a node should be formed indepen-
dently, and then placed as close together as possible. By
requiring that the subtrees be rigid at the time they are put
together, we avoid the undesirable effects that can accrue from
positioning nodes rather than subtrees.
The above heuristic is applied during a postorder traversal as

follows. At each node T, imagine that its two subtrees have
been drawn and cut out of paper along their contours. We
then superimpose the two subtrees at their roots and move
them apart until no two points are touching. Initially their
roots are separated by some agreed upon minimum distance;
then at the next lower level, we push them apart until mini-
mum separation is established there. This process continues
at successively lower levels until we get to the bottom of the
shorter subtree. At some levels no movement may be neces-
sary; but at no level are the two subtrees moved closer to-
gether. When the process is complete, we fix the position of
the subtrees relative to their father, which is centered over
them. Assured that the subtrees cannot be placed closer
together, we continue the postorder traversal. After this
traversal, a preorder traversal converts the relative positionings
into absolute coordinates.
This technique is similar to Algorithm WS in several ways:

Aesthetics 1, 2, and 3 are satisfied; fathers are visited after
sons so that they may be centered over them; and empty
subtrees are handled as in Algorithm WS. The essential dif-
ference is that mirror image trees produce mirror image draw-
ings and a subtree is drawn identically wherever it occurs.
Although the idea behind Algorithm TR is simple, imple-

mentation is somewhat tricky, because we need an efficient
way to follow the contour of a subtree as it is compared to its
brother subtree. As Fig. 2 illustrates, simply following left and
right links does not suffice. Note, however, that when the
next node on the contour is not a son of the current node, the
current node must be a leaf; in many applications this means
that it contains two unused pointer fields. We can use one
of these fields to store a temporary pointer to the next node
on the contour, as long as we reserve an additional bit to
distinguish it from a regular pointer. This idea is reminiscent
of threaded binary trees [11, and so we call these distinguished
pointers "threads." Fortunately, the maintenance of these
threads is not difficult and can be done at the same time the
subtrees are positioned.
We have implemented Algorithm TR in Pascal; the bulk of

the work is,done by the recursive postorder traversal pro-
cedure shown in Fig. 6. During the traversal the procedure
performs three tasks at each node T: first it determines how
close together the subtrees of T can be placed; second, it
keeps track of nodes that may need to be threaded later; and
third, it inserts a thread if one is required.
Since Aesthetic 3 requires that fathers be centered over sons,

it suffices to include a single integer field in each node that
specifies the horizontal offset between the node and each of

PROCEDURE SETUP (T: LENK; (* ROOT OF SUBTREE
LEVEL: INTEGER; (* CURRENT OVERALL LEVEL
VAR REOST,

LMOST EXTREME); (k EXTREME DESCENDANTS

(* THIS PROCEDURE IMPLEMENTS ALGORITHM TR, ASSIGNINE RELATIVE
(* POSITIONINGS TO ALL NODES IN TEE TREE POINTED TO BY PARAMETER T.

VAR
L, RE LENK;
LR, LL, RR, EL : EXTREME;

(* LEFT AND RIGHT SONS
(* LR - RIGHTMOST NODE ON
(* LOWEST LEVEL OF LEFT SUBTREE
(* AND SO ON

CURSEP, (* SEPARATION ON CURRENT LEVEL *)
ROOTSEP, (* CURRENT SEPARATION AT NODE T *)
LOFPSUM, ROFFSIN: ENTEGER; (R OFPSET FROM L & R TO T *)

BEGIN (* SETUP *)
IF T - NIL TREN BEGIN (R AVOED SELECTING AS EXTREME RI

LMOST.LEV : -l;
RKOST.LEV -S

END ELSE BENIN
T^.YCOORD :- LEVEL;
L T^.LLINK; (R FOLLOWS CONTOUR OF LEFT SUBTREE R)
R - T^.RLINK; (R FOLLOWS CONTOUR OP RIGNT SUBTREE *)
SETUP L, LEVEL+SS LR, LL); (R POSITION SUBTREES RECURSIVELY R)
SETUP RI, LEVEL+1, RR, RL);
EF (R-NIL) AND (L-NIL) THEN BEGIN (* LEA)

RMOST.ADDR TC; (* A LEAP IS BOTH THE LEPTMOST R)
LMOST.ADDR - T; (E AND RIGHTMOST NODE ON THE R)
RMOST.LEV :- LEVEL; (* LOWEST LEVEL OF THE SUBTREE *)
LMOST.LEV - LEVEL; (S CONSISTING OF ITSELF *)
RMOST.OFF - 0;
LMOST.OFF - 0;
T'.OFPS8T - 0

END ELSE BEGIN (R T NOT A LEA)

(SET UP FOR SUBTREE PUSHING. PLACE ROOTS OF R)
(R SUBTREES MINIMUM DISTANCE APART. R)

CURSEP - MINSEP;
ROOTSEP M- INSEP;
LOPPSUM 0;
RODFSUM - U;

(R NOW CONSIDER RACH LEVEL IN TURN UNTIL ONE *)
(R SUBTREE IS EXHAUSTED, PUSHING THE SUOTREES R)
(R APART WHEN NECESSARY. R)

WHILE (L<>NIL) AND (R<>NEL) DO BEGIN
IF CURSEP < MINSEP THEN BEGIN (* PUSH ? *)

ROOTSIP - ROOTSEP + (MINSEP - CURSEP);
CURSEP - MINSEP

ISD; (* ID CURSEP < MINSEP H)

(* ADVANCE L & R *)
IF L^.RLINK <> NIL THEN NEGIN

LOFFSPIM - LOPFSUM + L'.OFFSET;
CURSEP - CURSEP - L'.OFFSET;
L :- L^.RLiNK

END ELSE BEGIN
LOFFSUMK- LOFFSUM - L^.OFFSET;
CURSEP - CURSEP + L^.OFFSET;
L :- L^.LLINK

END;
IF R^.LLINK (> NEL THEN BEGIN

ROFFSUM :- ROFFSUM - R^.OFPSET;
CURSEP - CURSEP - R'.OFFSET;
R :- R^.LLINK

END ELSE BEGIN
ROFFSE :- ROFFSUI + R^.OFFSET;
CURSEP :- CURSEP + R^.OFFSET;
R :- R.RLINK

END; C* ELSE *)
END; (* WHILE *)

(* SET THE OFFSET IN NODE T, AND INCLUDE IT IN *)
(* ACCUMULATED OFFSETS FOR L AND R N)

T'.OFFSET :- (ROOTSEP + 1) DIV 2;
LOFFSUM : LOFFSUM - T^.OFFSET;
ROFFSUM - ROFFSUM + T'.OFFSET;

(R UPDATE EXTREME DESCENDANTS INFOREMATIOS R)

IF (RL.LEV > LL.LEV) OR CT^.LLINK - NIL) THEN BEGIN
LMOST :- RL;
LMOST.OFF :- LMOST.OFF + T^.OFFSET

END ELSE BEGIN
LMOST :- LL;
LMOST.OFF :- LMOST.OFF - T^.OFFSET

END;
IF (LR.LEV > RR.LEV) OR (T^.RLINK - SIL) THEN BEGIN

REOST :- LR;
RMOST.OFF :- RMOST.OFF - T^.OFFSET

END ELSE BEGIN
RMOST :- RR;
RMOST.OFF :- RMOST.OFF + T-.OFFSET

END;

(R IF SUBTREES OF T WERE OF UNEVEN HEIGHTS, CKER R)
(R TO SEE IF THREADING IS NHECESSARY. AT MOST ONE *)
(* THREAD NEEDS TO BE INSERTED. *)

IF (L 0> NEL) AND (L C> T.LLINK) THEEN BEGIN
RR.ADDRE.THREAD TRUE;
RR.ADDR'.OFFSET : ABS((RR.OFF + T^.OFFSET) - LOFFSUM);
IF LOFFSUM - T^.OFFSET <- R.OFF THEN

RR.ADDR'.LLINK - L
ELSE

RR.ADDR.RLINK - L
END ELSE IF (R <> NIL) AND (R > T^.RLINK) THEN BEGIN

LL.ADDR'.THREAD - TRUE;
LL.ADDR'.OFFSET A-BS((LL.OFF - T^.OFFSET) - ROFFSUM);
IF ROFFSUM + T'.OFFSET >- LL.OFF THEN

LL.ADDR'.RLINK RR
ELSE

LL.ADDR'.LLINK- R
END

ESD; (* OF IF NOT LEAF *)

END; (* OF T C> NIL *)

END; (* PROCEDURE SETUP *)

Fig. 6. Procedure SETUP assigns relative x coordinates to all nodes dur-
ing a postorder traversal.

its sons. We store this relative distance rather than the abso-
lute location so that subtrees can be pushed apart easily.
Storing this offset field in the father rather than sons may
not be a good idea for m-ary trees and forests, but for reasons

225

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 2, MARCH 1981

that will become apparent this method is preferable for binary
trees. A node of the tree, then, has the following format (for
the sake of clarity we have reserved space for both OFFSET
and XCOORD, although clearly these can share the same space
in a real implementation):

(* whatever *)

(* pointers to subtrees *)

(* coordinates of this node *)
(* distance to each son *)

The first task is determining the separation of the subtrees.
This is accomplished by the while loop in Fig. 6. It scans

down the right contour of the left subtree and the left contour
of the right subtree, computing the distance between them,
and pushing them apart when necessary. Variables L and R
are initially set to point to the left and right son, respectively,
of T. MINSEP is a parameter that gives the minimum separation
allowed between two nodes on a level; CURSEP holds the
separation at the current level. ROOTSEP accumulates the
required separation distance for the sons of T so that their
subtrees will have a separation of at least MINSEP at all levels.
LOFFSUM and ROFFSUM accumulate the total offset of the
current L and R from the root; this information is needed to
compute offsets of threaded nodes.
The second task is to keep track of the leftmost and right-

most nodes on the lowest level of the subtree; only these
nodes could ever be threaded. Information conceming these
extreme descendants is stored in the following record format:

EXTREME = RECORD

ADDR : LINK;
OFF : INTEGER;
LEV : INTEGER

END;

(* address *)
(* offset from root of subtree *)
(* tree level *)

If the current subtree is a single node, then that node is
trivially both the leftmost and rightmost node on the lowest
level of the subtree; otherwise, its extreme descendants can
easily be chosen from among the extreme descendants of its
sons.
Threading, the third task, is needed only if the subtrees

joined at the current node have different heights and neither
is empty. If the left subtree, say, is taller, a thread must be
inserted from the rightmost node on the lowest level of the
right subtree to the rightmost node on the next lower level
of the left subtree (Fig. 7). The former node is an extreme
descendant that has been determined by the second task in
a previous activation of SETUP, and the variable L is cur-

rently pointing to the latter node, so inserting the thread with
the appropriate offset is a simple matter. The thread is stored
in the left link field if the node to which it points is to its
left, and in the right link field otherwise; this makes the
threads transparent as the subtrees are pushed apart. This
convenience is the motivation for storing offsets in fathers

Fig. 7. The dashed lines represent threads used to follow the contours
of subtrees.

PROCEDURE PETRIFY (T: LINK; XPOS: COLUMN);

(* THIS PROCEDURE PERFORMS A PREORDER TRAVERSAL OF THE TREE, H)
(* CONVERTING THE RELATIVE OFFSETS TO ABSOLUTE COORDINATES. *)

BEGIN
IF T <> NIL THEN BEGIN

T^.XCOORD :- XPOS;
IF T^.THREAD THEN REGIN

T^.THREAD F-ALSE;
T^.RLINK - NIL; (THREADE
T^.LLINK NIL

ENDI
PETRIFY (T^.LLIiK, XPOS - T'.OFFSET);

PETRIFY (T^.RLINK, XPOS + T'.OFFsEr
END (* IF T <> NIL

END; (* PETRIFY *)

ED NODE MRST BE A LEAF *)

Fig. 8. Procedure PETRIFY converts relative positionings to absolute
coordinates.

rather than sons. Although a node can be threaded to at
most one other node, a node might be pointed to by two
active threads; thus, if offsets were stored in sons, extra space
would have to be reserved in each node for two thread offsets,
complicating both the data structure and the algorithm.
The relative positionings need to be converted to absolute

coordinates after procedure SETUP is finished. A simple
routine can scan the left contour of the tree to find the offset
from the leftmost node to the root. Lastly, procedure PETRIFY
(shown-in Fig. 8) -computes the final position of each node,
and erases all the threads as well.

MATHEMATICAL ANALYSIS
The algorithm does not-appear to be-cost effective because

it must examine the contour of the subtrees of every node in
the tree. However, the requirement that scanning must pro-

ceed only to the depth of the shorter subtree of each node
makes the running time linear in the number of nodes in the
tree and hence comparable to that of Algorithm WS.
The time required by Algorithm TR is completely deter-

mined by the while loop because SETUP iS executed exactly
once per node of the tree. To study the behavior of the
while loop, we need a few definitions. A binary tree is either
empty or consists of a node called the root and two subtrees
T1 and Tr. The size n(T) of a binary tree T is the number of
nodes it contains; its height h(T) is the number of nodes on

the longest path from- the root to a leaf. Thus the tree of
Fig. 4 has height 6 (although by the usual definition it has
height 5).
Note that the while loop is executed only so long as both L

and R are non-nil, that is, only until we have dropped off the
contour of the shorter subtree. The test of the loop fails once
for each node, i.e., n(T) times. Let F(T) be the number of
times the test of the loop succeeds, i.e., the number of times
the body of the loop is executed for a tree T.

F(nil) - F(.) = 0,

NODE = RECORD
INFO

LLINK,

RLINK : LINK;

XCOORD,
YCOORD: INTEGER;
OFFSET : IN-TEGER;
THREAD: BOOLEAN

END;

226

REINGOLD AND TILFORD: TIDIER DRAWINGS OF TREES

because the loop is not executed at all for empty trees or
leaves. Also,

F / / ,, \= F(T1) + F(Tr) + min [h(TI), h(Tr)1,

--A--
I I

--B- C

1 1

D E

Fig. 9. A tree and its most natural discrete representation.

since the number of times the loop is executed is equal to the
sum of the executions for each subtree, plus one iteration at
each level in the shorter of its subtrees as they are positioned.
We claim that F(T) = n(T) - h(T). The proof is by induc-

tion on N, the number of nodes in T. In light of our definition
of height, the truth of the claim at N = 0 and N = 1 is obvious.
Suppose the claim is true for trees of less than N nodes; we
show that it is then true for trees containing N nodes. Let T,
contain k < N nodes; then by the inductive hypothesis,

F(T) = [k - h(T1)] + [N - k - 1 - h(Tr)I
+ min [h(T,), h(Tr)I

= N - I - h(T,) - h(Tr) + min [h(T,), h(Tr)]
=N - (max[h(Ti),h(Tr)]+ 1).

But the parenthesized expression is exactly h(T), so that
F(T)= n(T) - h(T) and the claim holds for trees with N
nodes.
In retrospect, it is easy to see why the body of the while

loop is executed n(T) - h(T) times. The code there "glues"
two subtrees together; looking across levels of nodes, if there
are k nodes in a level then there are k - 1 gluings that occur at
that level. Summing over all levels except the root (there is no
gluing at the root level) gives [n(T)- 1] - [h(T)- 1] since the
total number of nodes except the root is n(T) - 1 and the
total number of levels except the root level is h(T) - 1.
Thus, the body of the loop is executed n(T) - h(T) times

and the loop test is made 2n(T) - h(T) times. The procedure
is therefore linear in n(T). The best case is a degenerate tree in
which no node has two sons; then n(T) = h(T) and the loop
body is never executed. The- worst case is a complete binary
tree for which the loop is executed about n(T) - lg n(T) times.

GENERALIZATION TO m-ARY TREES AND FORESTS
Algorithm TR can easily be extended to handle m-ary trees

without affecting its linear performance. Instead of making
one scan at each node to the depth of the shorter of two sub-
trees, we make m - 1 scans, one for each adja'cent pair of sub-
trees. As subtrees are combined into "clumps" (the order
in which this is done is unimportant), we scan to the depth
of the shorter clump in each case-thus, it is only the tallest
among the m subtrees whose height is not included in the
count of levels scanned. Let F(T) be the number of times the
body of the generalized while loop is executed for an m-ary
tree T; again F(T)= n(T) - h(T) by a simple extension of
either of the above proofs. Similarly, the number of times
that the test of the while loop fails is (m - 1) n(T).
For m-ary trees and forests we would probably not want to

insist that the separations of the roots of adjacent subtrees of
a given node be equal, so that if the separations were stored in
the father, m - 1 offset fields would be required per node in

B--A--C

F G H I

Fig. 10. A tree for which the straightforward discrete representation
is inadequate.

A

I C
B C

D E

I I

F G H I

Fig. 11. A revised discrete drawing for the tree of Fig. 10.

m-ary trees and arbitrarily many offset fields in forests. If
we store the offsets in sons instead, we will need only three
offset fields per node; the extra two are needed to store the
distance from nodes whose threads point to the current node.
Generalizing Algorithm TR for forests is less straightforward

than for m-ary trees and depends heavily on the representation
used. If a forest is represented as the binary tree that arises
from the "natural correspondence" (see [1]), then the re-
quired postorder traversal of the forest amounts to an inorder
traversal of the corresponding binary tree. Maintaining the
threads and following the contours between adjacent pairs
of subtrees -is made complicated because there is no direct
access from a father to its rightmost son. Following the right
contour requires going through all of the sons of a node to
reach the next node on the contour. Fortunately, the result-
ing algorithm remains linear in the number of nodes in the
forest. Details of the algorithm and its analysis can be found
in [4].

DISCRETIZATION PROBLEMS
Wetherell and Shannon note that some difficulties arise

when alphanumeric output devices are used to produce the
tree drawings. On line printer devices the natural way to draw
the tree of Fig. 9 is as shown. But both Algorithm WS and
Algorithm TR run into a problem for many trees in which one
subtree is wide and the other consists of just a few nodes, as
can be seen in Fig. 10. The simple solution is to draw the
tree in the way shown in Fig. 11; if we insist that branches
be in the style of Fig. 9, the drawings must be made con-
siderably wider.

227

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 2, MARCH 1981

A second issue in discretization is that coordinates must be
given integer values. The positioning of trees by Algorithm
WS, as implemented in [6], frequently fails to satisfy Aes-
thetic 3 by a small amount. When the distance between
brothers is an odd number, Algorithm WS truncates the
computed x coordinate of the father, leaving it uncentered.
By forcing a separation of even length between brothers,
Algorithm TR avoids this pitfall. Algorithm WS could be
similarly modified.

CONCLUSIONS
Algorithm TR produces very pleasing drawings in general.

Unfortunately, the drawings can be wider than the minimum
possible under the four aesthetics; this is unavoidable, how-
ever, because Supowit and Reingold [2] have shown that
determining the minimum width under these aesthetics is
NP-hard.

REFERENCES
[1] D. E. Knuth, The Art of Computer Programming, Vol. 1: Funda-

mentalAlgorithms, 2nd ed. Reading, MA: Addison-Wesley, 1972.
[2] K. J. Supowit and E. M. Reingold, "The complexity of drawing

trees nicely," to be published.
[3] R. E. Sweet, "Empirical estimates of program entropy," Dep.

Comput. Sci., Stanford Univ., Stanford, CA, Rep. STAN-CS-78-
698, Nov. 1978; also issued as Rep. CSL-78-3, Xerox PARC, Palo
Alto, CA, Sept. 1978.

[4] J. S. Tilford, "Tree drawing algorithms," M.S. thesis, Dep. Comput.
Sci., Univ. Illinois, Urbana, IL, Rep. UIUC DCS-R-81-1055, 1981.

[5] J. G. Vaucher, "Pretty-Printing of Trees," Software-Practice and
Experience, vol. 10, pp. 553-561, 1980.

[6] C. Wetherell and A. Shannon, "Tidy drawimgs of trees," IEEE
Trans. Software Eng., vol. SE-5, pp. 514-520, 1979.

Edward M. Reingold received the B.S. degree
from the Illinois Institute of Technology,
Chicago, IL, and the M.S. and Ph.D. degrees
from Cornell University, Ithaca, NY.

- He is currently an Associate Professor of
Computer Science at the University of 11-
linois, Urbana-Champaign. H-is areas of special-
ization are data structures and the analysis of
algorithms.

John S. Tilfoid received the B.A. degree from
DePauw University, Greencastle, IN, in 1977.
He is currently a Ph.D. candidate in computer

science at the University of Illinois, Urbana-
Champaign. His interests include data struc-
tures and relational database design theory.

228

