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The Complexity of Drawing Trees Nicely* 
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Summary. We investigate the complexity of producing aesthetically pleasing 
drawings of binary trees, drawings that are as narrow as possible. The notion 
of what is aesthetically pleasing is embodied in several constraints on the 
placement of nodes, relative to other nodes. Among the results we give are: 
(1) There is no obvious "principle of optimality" that can be applied, since 
globally narrow, aesthetic placements of trees may require wider than 
necessary subtrees. (2) A previously suggested heuristic can produce drawings 
on n-node trees that are O(n) times as wide as necessary. (3) The problem 
can be reduced in polynomial time to linear programming; hence, if the 
coordinates assigned to the nodes are continuous variables, then the problem 
can be solved in polynomial time. (4) If the placement is restricted to the 
integral lattice then the problem is NP-hard, as is its approximation to 
within a factor of about 4 per cent. 

From a tree no proof can be brought. 
Talmud: Baba Metziah 59b 

I. Introduction 

Recent papers [-7, 10, 9], have studied the problem of producing narrow, well- 
shaped drawings of tress. The notion of "well-shaped" is incorporated by several 
aesthetics [-7, 10] designed to capture various aspects of shapeliness. The basic 
task is to assign a pair of coordinates (x, y) to each node of the tree; after such 
an assignment of coordinates, the tree is easily printed or drawn on some output 
device. In this paper, we will examine the complexity of determining the assign- 
ment of coordinates that gives the narrowest possible drawing while satisfying 
the aesthetics. 

Let T be a (rooted, binary) tree. A placement of T is a function 

~: {nodes of T}~R 2. 
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The mapping n specifies, for each node p in T, the coordinates n(p)= (x, y) of 
the point in the Euclidean plane where p is to be placed when the tree is drawn. 
Drawing a tree T means drawing, for each edge (p, q) in T, a straight line segment 
joining point n(p) to point n(q). We will use nx(p) and nr(p) to denote the x and y 
coordinates of n(p), respectively. A placement n of T is eumorphous (from the 
Greek eylaopc~og meaning "well-shaped") if it satisfies the following six aesthetic 
constraints: 

Aesthetic 1. For each i>0,  there is a straight line fl such that for each node p 
which has level i, n(p) lies on fi. (The level of a node is the number of branches 
between it and the root;  that is, the root has level 0, and each other node has 
level one greater than that of its father). Furthermore, the lines fi are all mutually 
parallel and evenly spaced. Without loss of generality, we require that the lines fi 
are all parallel to the x-axis. 

Aesthetic 2. Each right son is placed strictly to the right of its father, and each 
left son strictly to the left of its father. In particular, for each node p that has a 
right son, 

nx(rightson(p))-nx(p) > 1, 

and for each node p that has a left son, 

n~(p) - n~(leftson(p)) > 1. 

Aesthetic 3. For each i >0, for each two nodes p, q having level i, p and q must 
be placed at least 2 units apart, that is, 

Inx(p)- nx(q) l > 2. 

Note that Aesthetic 3 is not implied by Aesthetic 2, since p and q need not have 
the same father. 

Aesthetic 4. Fathers must be centered over their sons. That  is, for each node p 
that has a left son and a right son, 

n~(rightson(p)) - n~(p)= nx(p) - n~(leftson(p)). 

Aesthetic 5. No two tree edges cross each other when the tree edges are drawn 
as straight line segments. That is, if two tree edges are drawn so as to intersect, 
then they share a common endpoint. 

Aesthetic 6. If T 1 and T2 are isomorphic subtrees of T, then n must place T 1 and T z 
identically, up to a translation. We use the term isomorphic to denote what 
Knuth calls similar ([-5], p. 325): Two binary trees 7"1, T 2 are isomorphic if either 
(1) they are both empty, or (2) they are both non-empty and their left and right 
subtrees are respectively isomorphic. By a translation, we mean that there are 
two real numbers A~ and Ay such that for each node p~ of 7"1, 

rt~(p~) = n~(p2) + Ax, 

and 
nr(p~) = roy(p2) + d r, 

where P2 is the node of T2 which corresponds to Pl under the isomorphism. 
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Some justification for the first of these aesthetics is given in [10], but they 
are rather self-evident. We note, however, that in drawing parse trees, one might 
want all the leaves to lie on one horizontal line; for that application Aesthetic 1 
is not desirable. In this case, though, the width (as defined below) of the placement 
is fixed and so the minimum width placement problem for such parse trees 
is not interesting. We therefore restrict our attention to the wide class of applica- 
tions for which Aesthetic 1 is desirable. 

Unlike the first five aesthetics, Aesthetic 6 perhaps does not immediately 
come to mind as a desirable property of tree drawings. However, we have included 
it for two reasons: 

(1) In I-7] an example is given of an undesirable placement of a tree by the 
algorithm of [-10]. That placement satisfies Aesthetics 1 through 5, but not 
Aesthetic 6. The undesirable features of this placement are precluded by Aes- 
thetic 6. (In fact, this is why the authors of [7] proposed Aesthetic 6.) 

(2) In some applications, one wishes to examine large trees to find repeated 
patterns; the search for patterns is facilitated by having isomorphic subtrees 
drawn isomorphically. For example, Bitner (see [6]) was looking for a way 
to prune a certain class of backtrack search trees. He discovered a recurrent 
pattern by visually examining a tree with 348 nodes. Such examinations are 
facilitated by Aesthetic 6 since it can aid in human pattern recognition. 

Our problem is: Given a tree T, find a eumorphous placement ~ of T of 
minimum width, where the width of n is defined as 

width(re(T)) = max {rex(p)- rex(q): p, q are nodes of T}. 

Because of the Aesthetic 1, the assignment of y-values to the nodes does not 
affect the width of the placement. Therefore we need consider only those eu- 
morphous placements rc such that for each node p other than the root, ~y(p) 
= roy(father(p))+ 1; in other words, the Euclidean distance from {i to fi+l is 1, 
for each i >0. 

The Wetherell-Shannon algorithm, given in [10], produces placements 
satisfying the first five Aesthetics. In [7], Reingold and Tilford give examples 
for which the Wheterell-Shannon algorithm produces placements wider than 
necessary. They also present a heuristic algorithm that produces placements 
of narrow width satisfying all six aesthetics (i.e., eumorphous placements). Both 
the Wetherall-Shannon and the Reingold-Tilford algorithms can be implemented 
in time O(n), where n is the number of nodes in the tree being drawn. 

There are four main results of the present paper. In Sect. II, we show that 
there is no obvious "principle of optimality" that could lead to a dynamic 
programming solution, since there exist trees whose minimum width placement 
cannot be achieved without making some subtrees wider than necessary. Also, 
we show that for an infinite class of integers n, there are n-node trees T such 
that 

width(re(T)) _ n + 2 
width(~'(T)) 6 ' 

where ~' is a minimum-width eumorphous placement of T and rc is the placement 
of T produced by the Reingold-Tilford algorithm. In Sect. III, we show that 
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the problem of finding a minimum width placement can be reduced in polynomial 
time to linear programming, and hence can be solved in polynomial time. 
However, as shown in Sect. IV, if we restrict placements to map nodes onto 
points in the integral lattice, then the problem is NP-hard; in fact, we show 
that if P +NP,  then there does not exist a polynomial time algorithm A which 
produces eumorphous placements such that for each tree T, 

width (Tz(T)) 25 

width (rc'(T)) < ~ '  

where re' is the minimum width eumorphous placement and rc is the placement 
produced by algorithm A. 

II. Suboptimality of the Reingold-Tilford algorithm 

The Reingold-Tilford (RT) algorithm for producing eumorphous placements 
works on a tree T essentially as follows: 

1. If T has a nonempty left subtree, then apply the algorithm recursively to 
that subtree. 

2. If T has a nonempty right subtree, then apply the algorithm recursively to 
that subtree. 

3. (a) If root (T) has only one nonempty subtree, then place that subtree, as 
positioned by (1) or (2), so that the root of the subtree is horizontal distance 1 from 
its father, on the appropriate side. 

(b) If T has two nonempty subtrees then place them, as positioned by (1) or (2), 
as close together as possible without violating the aesthetics, and then place the 
root of T midway between the sons in accordance with Aesthetic 4. 

It is simple to show by induction on the height of T that the algorithm gives 
a eumorphous placement of T. 

A plausible principle of optimality would be: if a eumorphous placement rt 
of a tree T has minimum width then for each subtree T' of T, the placement n(T') 

Fig. 1. Schematic view of a tree that violates the principle of optimality 
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Fig. 2. A tree that violates the principle of optimality 

has minimum width. It turns out, however that this is not always true, as we now 
show. We first informally describe the tree T pictured schematically in Figs. l(a) 
and l(b). If the subtree rooted at node p is placed with a minimum width eumor- 
phous placement (as in Fig. l(b)), then Aesthetic 3 forces T 3 to be placed rather 
far to the right, in order that the leftmost node of T 3 does not collide with the right- 
most node of T1. On the other hand, if the root of T t is placed farther from the root 
of T2, then T 3 can be moved to the left (see Fig. l(a)); thus making the subtree 
rooted at p wider than necessary, but giving the entire tree T minimum width. 

To be more precise, an example of such a tree T is given in Fig. 2(a) and 2(b). 
Because of Aesthetics 1 through 3, for each eumorphous placement ~ of T such 
that width (~(subtree rooted at p))) has minimum width (namely, 2), we have 
width (~(T)) > 16; such a placement is shown in Fig. 2 (a). However, the eumorphous 
placement 7z of T shown in Fig. 2(b) satisfies 

width (lz(subtree rooted at p)) = 5, 

and 
width (~z(T))= 14.5. 

Thus, T is a counterexample to the principle of optimality stated above. 
Because Algorithm RT works recursively on each nonempty subtree of its input 
tree, the falseness of the principle of optimality proves that Algorithm RT does 
not always produce minimum width eumorphous placements. In fact, we now 
show that algorithm RT does not always even approximate the minimum width 
eumorphous placement. 
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Fig. 3(a). Algorithm RT's  placement of T 1 (b). The minimum width eumorphous placement of T 1 

Fig. 4(a). Algorithms RT's  placement of T k (h). The minimum width eumorphous placement of Tk 

Figure 3 (a) shows the placement rt produced by Algorithm RT for a tree 7"1 ; 
Figure 3(b) shows a minimum width eumorphous placement of T1. Note  that 

width(re(T0)=3 and width(rc'(T1))=2. 

The tree Tk in Figs. 4(a) and 4(b) consists of k copies of the tree T1 of Fig. 3, linked 
together vertically. Figure 4 (a) shows the placement zt of T k produced by Algorithm 
RT; Figure 4 (b) shows the minimum width eumorphous placement r(. The number  
of nodes in Tk is 

Also, 

k((the number  of nodes in T1)-  1)+ 1 = 6 k +  1. 

n + 2  
width (n(Tk)) = k (width (re(T1)) - 1) + 1 = 2 k + 1 -- 

3 ' 

where n = 6 k + 1 is the number of nodes of Tk. Thus, for an infinite class of n, 
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there exist trees T such that 

width ( r e (T) ) .  ( n ~ 2 )  +2  
width(n '(r))  / 2 =  n 6 ' 

where n' is the minimum width placement of T. 

383 

III. A Polynomial-Time Algorithm for the Continuous Case 

In this section, we prove that the problem of computing a minimum width eumor- 
phous placement of a tree T can be done in deterministic polynomial time. The 
proof is a polynomial time reduction of the problem to a linear program, which 
can be solved in deterministic polynomial time by Khachian's algorithm [3]. We 
stress that this result is not meant to be of practical importance; it serves only 
to contrast with the NP-hardness results of the next section. For that reason, 
we have not concentrated much on the efficiency of the resulting polynomial time 
algorithm, but have been satisfied with somewhat crude bounds on performance. 

The linear program that we will construct has variables nx(p) for each node p 
in the tree, and two auxiliary variables X and x. In addition to the inequalities 
that we describe below, we have, for all nodes p, 

x > ~x(p), 

and 
x < rex(p). 

The objective function to be minimized in the linear program is X - x ,  the width 
of the mapping rc. Thus we will have a minimum width placement, subject to the 
constraints of the inequalities, as constructed from the tree and the aesthetics. 

As we have stated above, the first aesthetic does not concern the nx(p). For the 
second aesthetic, we introduce the inequalities 

n~(rightson(p))-n~(p) > 1, (1) 

for all nodes p for which rightson(p) exists, and 

nx(p) - n~(leftson (p)) > 1, (2) 

for all nodes p for which leftson(p) exists. These constraints can be computed in a 
preorder traversal of the tree [5]. For  the third aesthetic, we have the inequalities 

~x(P2) - n~,(P a) > 2, (3) 

for all nodes Pl, P2 such that pl and P2 are on the same level of the tree and P2 
is the level order successor of p~. These constraints can be computed on a level 
order traversal of the tree [6]. Constraints (1), (2) and (3) also force the placement 
rc to satisfy the fifth aesthetic, as a simple inductive argument shows. To force 
compliance with the fourth aesthetic, we have the equalities 

~ (rightson (p)) - ~(p)  = rc~(p) - z~x(leftson (p)), (4) 

for all nodes for which both leftson(p) and rightson(p) exist. 
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Aesthetic 6 is the most troublesome, since it requires the determination of all 
pairs of isomorphic subtrees in the tree. We can do this in polynomial time by 
labelling each node in the tree with a label consisting of 

(1) the number of nodes in the subtree rooted at that node, and 
(2) the rank of that subtree, where the rank is as defined by Knott  in [4]. 
The computation of the rank at the root requires (recursively) the computation 

of the rank for each of the subtrees, and so the labelling requires a single application 
of an appropriate form of the rank procedure given in [4]. In addition, we may 
encode the number of nodes in the subtree with the rank, as Knott suggests. The 
rank of a subtree, together with its size, uniquely determines the subtree, up to 
isomorphism. Thus by sorting the nodes in increasing order by label, we can parti- 
tion them into equivalence classds based on isomorphism. For each non-singleton 
equivalence class of subtrees other than the leaves, we add constraints as follows. 
Let {Pl, P2 .... , Pk} be a set of roots of subtrees in some equivalence class. We include 
inequalities 

n ~ ( r i g h t s o n  (Pi))  - 7Zx(Pi) = n~(rightson (Pi + 1)) - 7~x(Pi + 1) (4 a) 

for all i, l __< i < k such that right subtrees exist for trees in the equivalence class, and 

rex (pl) - rc~(leftson (Pi)) = ~(Pi+ 1) - rc~(leftson (pi+ 1)) (4 b) 

for all i, l < i <  k, such that right subtrees do not exist for trees in the equivalence 
class. 

Because corresponding subtrees of isomorphic trees are isomorphic, constraints 
(4 a) and (4b) are sufficient to force compliance with Aesthetic 6. The time required 
to compute (4a) or (4b) depends on the time to compute the rank function but 
that is clearly polynomial, as follows from a straightforward analysis of Knott's 
formulae. 

The total number of constraints (1), (2), (3) and (4) is O(n) for a tree with n 
nodes. 

Thus the reduction to a linear program can be done in polynomial time and 
by [3] can be solved in polynomial time. 

IV. The NP-Hardness of the Discrete Case 

In this section, we restrict placements to the integral lattice; that is, we allow only 
placements r~ such that for each node p, ~x(P) and ~y(p) are integers. This case is 
of far more practical significance than the continuous case discussed in Sect. III, 
because in actually drawing trees the resolution is finite and very crude on line 
printers, and better but still finite on plotting devices. 

We will show the following discrete optimization problem to be NP-hard: 
Given a tree T, find a minimum width eumorphous placement of the nodes of T 
on the integral lattice. We prove this by showing that the corresponding decision 
problem is NP-complete: Given a tree T and an integer W > 1, is there a eumor- 
phous placement ~z of T on the integral lattice so that width(~(T))<= W? Because 
integer programming is in NP [1], the results of Sect. III imply that this decision 
problem is in NP. 
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Fig. 5. Schematic view of T(E), where E = ( F  1 A F 2 A ... A Fr) 

To show NP-hardness of the decision problem, we will give a reduction from 
3-SAT (see [2]) to the specific decision problem in which W=24. Let 

E=F, AG~...AF~ 

be a Boolean expression over the variables x l ,  x2 . . . . .  x, ,  with clauses 

F i = ( Y i , 1  + Yi,  2 + Yi,  3), 

for each i, l < i < r, where the Yij are literals. We will construct a tree T(E) for which 
there is a eumorphous placement of width <24  if and only if E is satisfiable. 
Conceptually, T is of the form shown in Fig. 5. That is, T(E) can be thought of 
as consisting of r clause trees, each corresponding to a clause F i. Denote the clause 
tree for F i by CT(Fi). If E is satisfiable then there is a eumorphous placement g 
such that width(n(CT(F~)))<24, for each i, 1 <i<_r. On the other hand, i fE  is not 
satisfiable, then for each eumorphous placement g, at least one clause tree Fj satisfies 
width (n(CT(Fj))) >_ 25; hence width (n(T(E))) > 25. 
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Fig. 6. Schematic view of a clause tree CT(F), where F=(y I +yz+y3) 

Fig. 7. The variable tree VT(x~) 

Fig. 8. The literal tree LT(y), where y-~x k 

Construction o f  a Clause Tree 

We n o w  descr ibe  CT(F) ,  for a c lause  F = ( y  1 +Y2+Y3) .  C T ( F )  c o n t a i n s  as sub-  
trees three  literal trees (deno ted  LT(yl) ,  LT(y2), a n d  LT(y3)), one  c o r r e s p o n d i n g  
to each l i teral  of F, as s h o w n  in  Fig.  6: v~ is the  roo t  of  CT(F) .  I t  has  a left son  v 2 
and  a r ight  son  v 3. v z has  a left son  v 4 a n d  a r ight  son  v 5. v3 has  a r ight  son  v6. 
v~ has  as a left son  the  roo t  of LT(yi,1). v 5 has  as a r ight  son  the  roo t  of LT(yi,2). 
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Fig. 9. The literal tree LT(y), where Y='X'k 

Fig. 10. The clause tree CT(F), where F=(xI+x2+xr The diamond is the root of CT(F); the 
squares are the roots of the three literal trees; the circles are the roots of the three variable trees 

V 6 has as a r ight  son the roo t  of LT(yi. 3)" Not ice  tha t  the roo ts  of  the three l i teral  
trees all have  the same level (namely,  3) in CT(F). 

We now descr ibe  LT(y), for a l i teral  y in F. The  var iable  in the l i teral  y is x k 
for some k, 1 < k < n; that  is, y is x k or  Xk. LT(y) contains ,  as a subtree, the variable 
tree (denoted VT(Xk)) for x k. VT(xk) is shown in Fig. 7(a) and  7(b). p is the roo t  of  
VT(Xk). There  is a zigzagging tai l  of  k +  1 nodes  qo, ql, ..., qk. That  is, for all 
m, 1 < r e < k - 1 ,  q,, has exact ly one son q , ,+l .  I f m  is even then q,,+t is a left son, 
o therwise  it is a r ight  son. 

If  y is uncomplemen ted ,  i.e., y = x  k, then LT(y) is as shown in Fig. 8(a) and  
8(b). Otherwise,  when y=Xk, LT(y) is as shown in Fig. 9(a) and  9(b). In ei ther  case, 
not ice  that  VT(Xk) is a subt ree  of LT(y). 

This comple tes  the descr ip t ion  of  CT(F) (later, we will say why we dis t inguish  
the node  w in Figs. 8 and 9). The  example  CT(F), where F = (x 1 + x2 + x3), is shown 
in Fig. 10. In Fig. 10, the roo t  of  CT(F) is shown as a d i amond ,  the three roots  
of  l i teral  trees are  shown as squares,  and  the three roo t s  of  var iable  trees are shown 
as circles. 



388 K.J. Supowit and E.M. Reingold 

Linking the Clause Trees Together 

The root of CT(F1) is also the root of T(E). The only remaining detail of T(E) 
to be specified is how the clause trees are connected to each other. Fix some i, 
1 < i < r - 1. We will describe how CT(Fz) is connected to CT(Fi+ 1). Consider the 
node of LT(y~, 2) (i.e., the middle literal of Fi) labelled w in Figs. 8 and 9. There is a 
zigzagging tail of n + 6 nodes coming down from w. The (n + 6) th node in the tail 
is the root of CT(F~+ O. 

As an example, the complete tree T(E) produced by this reduction for the 
expression 

E = (x i + X2 -~- X3) A (.~ 1 + X2 "-[- X4) A (X2 "-~ X3 + "~4) 

is shown in Fig. 11. The diamonds, squares, and circles are used to distinguish 
types of nodes exactly as in Fig. 10. 

Proof that E is Satisfiable iff T(E) can be Placed in Width <= 24 

Note that each occurrence of each variable tree in T(E) is a subtree of T(E). 
Therefore, for all k, 1 < k < n, Aesthetic 6 causes each occurrence of VT(Xk) to be 
placed identically, up to translations. This is a key point in the proof. 

Assume that E is satisfiable with the truth assignment 

~: {xl, x2, ..., x,}--, {true, false}. 

We will construct a placement rc of T(E) such that width(7~(T(E)))< 24. 
For all k, 1 < k < n, if ~(Xk)= true then let n place V T(xk) as shown in Fig. 7 (a); 

that is, each son has the minimum (1 unit ) allowed horizontal distance from its 
father. If Z(Xk)=false, then rc places VT(Xk) as shown in Fig. 7(b); that is, each son 
has the minimum horizontal distance from its father, except for the son of p, 
which has horizontal distance 2 from p. 

For all i and j such that 1 < i <  r and 1 =<j__< 3, if Yij=Xk is uncomplemented, 
then let n place it as in Fig. 8 (a) if z (Xk)= true, and as in Fig. 8 (b) if z (xk)= false. 
If yij='Yk is complemented, then place it as in Fig. 9(b) if Z(Xk)=true, and as in 
Fig. 9 (a) if z (Xk)= false. Note that if Yij is true under z, then width(r~(LT(yij)))= 6 
(Figs. 8(a) and 9(a)). If Yij is false under z, then width(n(LT(yij)))=7 (Figs. 8(b) 
and 9 (b)). 

We now consider the placement of the clause trees. Let 1 < i_< r. Note that for 
all j, 1 _<j __< r, the root of LT(y~j) is the only son of its father (see Fig. 6). Therefore 
we have the freedom to place those three roots close together without worrying 
about Aesthetic 4. More specifically, place the root of LT(y~. 1) one unit left of 
its father in CT(F~). Then place the root of LT(y~, 2) as far left as possible while 
having each node of LT(yi, 2) placed at least 2 units to the right of each node of 
LT(yi, 1) (so that Aesthetic 3 is not violated). Similarly, place the root of LT(y~, a) 
as far left as possible. Thus, 

width (r~(CT(F~))) < width (rc(LT(y~, 1))) + 2 

+ width (~(LT(y~, 2))) + 2 

+ width (~(LY(yi, 3))). 
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Fig. I1. A placement zc of T(E), where 

E=(X1 ~-X2 -[- X3) A (X1 -}-X2 ~-X4) A (X2 -~X3 q- X4)" 

The diamonds are the roots of the clause trees; the squares are the roots of the three literal trees; 
the circles are the roots of the three variable trees, r~ corresponds to the truth assignment z which 
makes xl, xt, and x 4 true, and x 3 false 

N o w  s ince  x sa t i s f ies  E, a t  l eas t  o n e  of  t he  t h r e e  l i t e ra l s  in  Fi is t r u e  u n d e r  z. T h e r e -  

fore  a t  leas t  o n e  of  LT(y~, 1), LT(yc2), o r  LT(y~, 3) is p l a c e d  in  w i d t h  6 b y  re, a n d  

t he  o t h e r  t w o  a re  p l a c e d  in  w i d t h  6 o r  7. T h e r e f o r e  

w i d t h  (rc(CT(Fi)))  < 7 + 7 + 6 + 2 + 2 = 24 .  
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We want to align the clause trees ofz (E) so that the width of T(E) is equal to the 
width of its widest clause tree. We are free to do this without violating the Aesthetics 
because of the length and flexibility of the zigzagging chains that connect the clause 
trees: their length (i.e., n + 6  nodes) guarantees that there will be no interference 
between clauses, while their flexibility allows for proper alignment. Thus, for all 
i, 1 <__i<=r, let 7z place the root of CT(Fi) so that the leftmost node in CT(F~) has 
x-value 0. Thus 

width(rc(T(E)))= max {widthOz(CT(Fi))) } =<24. 
l~i<-_r 

as claimed. Figure 11 illustrates r~ for a satisfiable E. 
We now show the converse, namely that if T(E) can be placed in width __< 24 

then E is satisfiable. Assume that there exists a eumorphous placement re' of 
T(E) such that width(r((T(E)))<24. We will construct a truth assignment z' 
satisfying E. Define z' as follows: for all k, 1 _<__ k _<_ n, let 

true, if there is an occurrence of VT(Xk) in T(E) such that r( 
places the root of VT(Xk) exactly one unit to the right 
of its son (for example, 7z' might place VT(Xk) as shown 

72'(Xk)'~- in Fig. 7(a)). 

false, otherwise. 

Recall that since each occurrence of VT(Xk) is a subtree of T, Aesthetic 6 tells us 
that each occurrence of the root of VT(xk) will have the same distance from its 
son. 

For convenience, if T is a tree and rc a placement of T, then we define 
widthe(rc(T)) ) to be the distance between the rightmost and leftmost nodes on 
level ( in T, as placed by ~. Now consider some LT(y). It is straightforward to 
show if y is false under the truth assignment z', then width 3(r((LT(y))) _-> 7. We now 
conclude that z' satisfies E, since otherwise there would exist an i, 1 _<i_ r such 
that F i is false under z'. But then, by the above remarks, 

width(~'(T(E)))__>width(~'(CT(Fi))) 

__> width 6 (7~'( C T (F~))) 

> 7 + 2 + 7 + 2 + 7  

=25, 
contradicting the choice of ~'. 

T(E) has O (nk) levels, each containing O(1) nodes. Therefore the construction 
of T(E) can be performed in time polynomial in the size of E. 

We summarize this result as: 
Theorem. Given a rooted binary tree T and a positive integer W, the problem of 
determining the existence of a eumorphous placement on the integral lattice of T 
of width at most W is NP-complete. In fact, the specific sub-problem in which W 
= 24 is NP-complete. 

Immediate from the theorem is the following result on the complexity of near- 
minimum width tree-drawings: 
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Corollary. I f  P 4= NP, then there is no polynomial time algorithm A that produces 
eumorphous placements on the integral lattice such that for all trees T, 

the width of A' s placement of T 
25 

< ~-~ (width of the narrowest eumorphous placement of T). 

Informally, the corollary says that it is NP-hard to approximate minimum width 
eumorphous placements of trees to within a factor of less than about 4 per cent. 

V. Conclusions 

We can generalize Aesthetic 2 to state that for each node p that has a right son, 

7rx(rightson (p)) - rex(p) > 6, 

and for each node p that has a leftson 

rex(p) - gx(leftson (p)) >6  ; 

and Aesthetic 3 to state that for each two nodes p, q having the same level, 

]rL,(p ) - rc~(q)] >2 6 ,  

where 6 >0  is a real number giving the minimum horizontal separation. Thus, 
as we have phrased Aesthetics 2 and 3 in Sect. I, 6 =  1. The results of Sect. II 
and III are not changed by this generalization. The NP-hardness reduction in 
Sect. IV easily generalizes to the case in which [6] is odd. The Corollary 
generalizes to: For all 6 > 0  such that 1-6] is odd, P + N P  implies that there is 
no polynomial time algorithm A for the discrete optimization problem with 
minimum horizontal separation 6 such that for all trees T, 

width of A's placement of T <  
24 [6] + 1 

23 [6] + 1 

We believe that a similar result also holds when [6] is even. 
The open problems concerning the complexity of tree drawing include: 
1. If we drop the Aesthetic 6, is the discrete optimization problem still NP- 

hard? Note that our reduction depends heavily on Aesthetic 6. 
2. By the corollary, it is NP-hard to approximate the discrete optimization 

problem to within a factor of less than z~.2 5 Is there some constant c > 0 and some 
polynomial time heuristic algorithm that always approximates the optimal width 
to within a factor of c? For the general integer programming problem, it is known 
that for all constants c>  0, P + NP implies that no polynomial time algorithm 
approximates the optimal to within a factor ofc  [8]. Is this also true for the special 
case of integer programming that corresponds to our discrete tree-drawing 
optimization problem? 

3. Is there an algorithm for the continuous optimization problem that is 
faster or easier to implement than Khachian's linear programming algorithm [3]? 

4. Is there a simple set of aesthetics that more accurately captures our intuitive 
notion of nice tree drawings? 
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